Abstract PWE-186 Table 1

<table>
<thead>
<tr>
<th></th>
<th>WL</th>
<th>iScan</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polys 1–100</td>
<td>Sensitivity</td>
<td>0.788</td>
<td>0.868</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>0.708</td>
<td>0.766</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>0.750</td>
<td>0.820</td>
</tr>
<tr>
<td>Set 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polys 101–200</td>
<td>Sensitivity</td>
<td>0.866</td>
<td>0.851</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>0.758</td>
<td>0.758</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>0.830</td>
<td>0.820</td>
</tr>
<tr>
<td>Set 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polys 201–309</td>
<td>Sensitivity</td>
<td>0.964</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>0.808</td>
<td>0.769</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>0.927</td>
<td>0.936</td>
</tr>
</tbody>
</table>

Conclusion (1) Even in expert hands there is a significant learning curve for using a new technology for the in vivo diagnosis of small colonic polyps, with improvement in performance over the first 200 polyps assessed. (2) Excellent results can be achieved once the new technology has been mastered. (3) This is the first report of results achieved with high-definition white light endoscopy which are comparable with electronic chromoendoscopy and IC chromoendoscopy.

Competing interests None declared.

PWE-187 COLONIC BIOPSIES TO DETECT MICROSCOPIC COLITIS IN PATIENTS WITH DIARRHOEA AND “NORMAL” COLONOSCOPY: WORTH THE EFFORT?

doi:10.1136/gutjnl-2012-302514d.187

P. S Sidhu, F Khan, J Hebben, M Donnelly. Department of Gastroenterology, Sheffield Teaching Hospitals, Sheffield, UK

Introduction Patients investigated for diarrhoea often have macroscopically normal colonoscopies. Biopsies are, however, required in order to diagnose microscopic colitis (MC). Obtaining colonoscopic biopsies for persistent diarrhoea is an auditable JAG standard. The aim of this study, carried out in a single large NHS Teaching Hospitals Trust was (1) To measure the incidence of MC in patients with diarrhoea who had a “normal” colonoscopy. (2) To examine whether the discipline of the colonoscopist affected whether biopsies were taken in this situation or not. (3) To assess which biopsy protocols were being used.

Methods An analysis was performed of all colonoscopies with the indication of diarrhoea, with normal findings, undertaken in 2010. Interoception of the endoscopy recording system (ERS), looked at endoscopist discipline, if biopsies were taken, biopsy sites and histology results.

Results A total of 4755 colonoscopy records were examined, of which 750 (15.8%) were performed for diarrhoea. 313/750 (41.7%) colonoscopies were described as being entirely normal. Of the 313 “normal” colonoscopies, 132 (42.2%) were performed by physicians, 40 (12.8%) surgeons; 124 (39.6%) nurses; 17 (5.4%) not specified. 294 (93.9%) colonoscopies had biopsies taken and MC was confirmed histologically in 14 (4.8%). Among the different professional groups, there was variation in the frequency of obtaining biopsy specimens: physicians 126/132 (95.5%), surgeons 35/40 (87.5%) and nurses 118/124 (95.2%). The difference between physicians and surgeons was not statistically significant (χ^2=3.55, p=0.06). Positive biopsy for MC was similar between the different groups: physicians 5 (3.8%), surgeons 2 (5.0%), nurses 5 (4.0%) (p=NS). Of the patients who did have biopsies performed, 274/294, (93%) had both right and left colon sampled.

Conclusion The vast majority (93.9%) of patients presenting with diarrhoea and a normal colonoscopy in our unit are having colonic biopsies performed to exclude a diagnosis of microscopic colitis. The histology positivity rate was 5%, comparable to similar published series. A majority of all professional colonoscopists perform colonic biopsies appropriately in the setting of diarrhoea and normal colonoscopy. There is variability, but this is not statistically significant.

Competing interests None declared.

PWE-188 USING A “CONVERSION FACTOR” TO ESTIMATE ADENOMA DETECTION RATE

doi:10.1136/gutjnl-2012-302514d.188

1P T Rajasekhar,* 2T J Lee, 3M D Rutter, 4M G Bramble, 5D W Wilson, 6J E East, 6B P Saunders, 7P Hungin, 8C J Rees. 1South Tyneside Foundation Trust, South Shields, UK; 2Freeman Hospital, Newcastle, UK; 3University Hospital of North Tees, Middlesbrough, UK; 4South Tyneside General Hospital, South Shields, UK; 5Royal Victoria Infirmary, Newcastle upon Tyne, UK; 6Newcastle General Hospital, Newcastle upon Tyne, UK; 7South Tyneside General Hospital, South Shields, UK.

Conclusion Three patients died of colorectal cancer—two patients had adenomas detected on initial surveillance colonoscopy and one had a flat adenoma which was not detected.

Competing interests None declared.

REFERENCES

Introduction Adenoma detection rate (ADR) is the recommended surrogate marker for a thorough colonoscopic examination. Collecting histology makes its calculation arduous so polyp detection rate (PDR) is often used instead. It has been proposed that the ADR:PDR ratio can be used as a “conversion factor” to accurately estimate ADR. Work from the Bowel Cancer Screening Programme (BCSP) has shown that adenomas are more prevalent in this population suggesting the ratio may be different. We aimed to assess the feasibility of using a “conversion factor” to estimate ADR from PDR in different UK populations.

Methods Colonoscopy performance data from the symptomatic services were collected over a 3-month period from 12 units in the northern region of England. Data from all procedures performed by BCSP accredited colonoscopists were excluded from this group. National colonoscopy performance data were extracted from the BCSP database from a 12-month period. Colonoscopists detecting polyps in ≥10 patients were included. Data collected included colonoscopy, PDR and ADR. The conversion factor was calculated separately for each group. The ADR:PDR ratio was calculated at the level of the colonoscopist and the group mean used as the conversion factor. The estimated ADR was calculated using: PDR × conversion factor. The relationship between the actual and estimated ADR was evaluated using Pearson’s correlation coefficient.

Results In the symptomatic services 3219 colonoscopies were performed by 55 colonoscopists. In the BCSP 31017 procedures were performed by 147 colonoscopists. The PDR and ADR respectively for the symptomatic group were 30.7%, IQR 24.8–40.0 and 18.0%, IQR 14.0–24.0, and for the BCSP group were 59.3%, IQR 53.8–65.0 and 46.0%, IQR 45.0–51.3. The ADR:PDR ratio in the symptomatic and BCSP groups were 0.59 (IQR 0.47–0.69) and 0.78 (IQR 0.74–0.81). The correlation between the estimated and actual ADR was 0.68 (p<0.001) and 0.83 (p<0.001) for the symptomatic and BCSP groups respectively.

Conclusion We demonstrate using estimated ADR, when calculation of ADR is not feasible, may be an acceptable marker of quality in colonoscopy. The difference in the conversion factors between the groups studied here is likely to be due to the selected population colonoscoped within the BCSP but suggests it will need to be adjusted for different patient populations. Studies to further validate this concept and ensure that conversion factors remain consistent over time are ongoing.

Competing interests None declared.

PWE-189 ACHIEVING HIGH QUALITY COLONOSCOPY: USING GRAPHICAL REPRESENTATION TO MEASURE PERFORMANCE AND RESET STANDARDS

doi:10.1136/gutjnl-2012-302514d.189

References

PWE-190 ENDOSCOPIC MUCOSAL RESECTION OF LARGE COLORECTAL POLYPS: OUTCOMES FROM A REGIONAL BOWEL CANCER SCREENING CENTRE

doi:10.1136/gutjnl-2012-302514d.190

Introduction Endoscopic mucosal resection (EMR) of colorectal polyps has been reported to be a safe and effective technique within