Introduction The incidence of oesophageal adenocarcinoma (EA) has quadrupled in the last 30 years and outcomes remain poor. Unlike other epithelial cancers, targeted therapies for EA are at an early stage. Using gene expression profiling, we have previously identified TRIM44 as an independent prognostic gene in EA.

Methods The aims of this project were to (1) Explore the mechanism of dysregulation of TRIM44 and association with prognosis. (2) Examine the oncogenic potential of TRIM44 in EA and other epithelial cancers (3) Identify therapeutic options exploiting TRIM44 dysregulation.

Results Analysis of our EA expression microarray data (n=75), an independent matched aCGH and expression microarray of 997 breast cancers (BC) and an online database (Tumourscape n=1932, various epithelial tumours) revealed focal amplification of TRIM44 in 8% of EA, 6% of BC and 4% of epithelial tumours. Amplification in EA was validated using FISH on tissue microarrays (n=164). Expression of TRIM44 was copy number driven in both EA and BC and amplification conferred a poor prognosis in BC (p=0.057).

Functional work demonstrated oncogenic addiction to TRIM44 in cell line models harbouring amplifications; siRNA knockdown in HSC39 (amplification) and JIMT-1 (high expression) decreased proliferation of cells by twofold (p<0.05) and increased subG0 fraction on FACS (2.5-fold, p<0.01). In contrast, knockdown in OE19 (low expression) had no observed effect. Overexpression of TRIM44 in Hela cells using a Tet-inducible system increased proliferation (2.5-fold, p=0.0038) and invasiveness (twofold, p<0.05). Analysis of the microarray data (EA and breast) identified a potential link between TRIM44 and the mTOR pathway, and suggested sirolimus (mTOR inhibitor) as a therapeutic option. Validation of these findings were performed by IHC of amplified EA samples and showed exact co-localisation of TRIM44 and p-mTOR staining. In addition, treatment of HSC39 and JIMT-1 with RAD001 (mTOR inhibitor) showed that they were highly sensitive (IC50 <30 nm).

Conclusion TRIM44 is amplified in >5% of EA leading to increased proliferation and invasion in vitro. Our data suggest a mode of action of TRIM44 via the mTOR pathway. Evaluation of mTOR inhibitors in EA tumours is worthy of consideration and these are currently being evaluated in phase I/II oncology clinical trials in other epithelial cancers such as renal cell and lung cancer). Assessment of TRIM44 amplification status may allow selection of patients who are more likely to respond.

Competing interests None declared.

OC-019 ALTERED TRAIL, CASPASE12, BAK AND FAS-L EXPRESSIONS ARE ASSOCIATED WITH INCREASED SUSCEPTIBILITY TO RADIATION INDUCED INTESTINAL EPITHELIAL APOPTOSIS IN NF-κB1-NULL AND NF-κB2-NULL MICE

doi:10.1136/gutjnl-2012-302514a.19

1A Hanedi,* 2M D Burkitt, 3C A Duckworth, 2R Dimaline, 3J H Caamano, 1D M Pritchard. 1Department of Gastroenterology, University of Liverpool, Liverpool, UK; 2Department of Physiology, University of Liverpool, Liverpool, UK; 3IBR-MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK

Introduction The Nuclear Factor κ B (NFκB) family is composed of five members, RelA, c-Rel, NFKB1, RelB and NFKB2. The first three members signal via the classical pathway and the last two via the alternative pathway to regulate several cellular processes including apoptosis. NFKB1 has previously been shown to regulate radiation-induced apoptosis in the murine small intestine, but the underlying mechanisms have not been defined. The roles of other family members, particularly those involved in alternative pathway molecular event. APC regulates B-catenin function and the WNT signalling pathway to control intestinal homeostasis. However, mutation or loss of APC gene results in translocation of B-catenin into the nucleus, where it forms a heterodimeric transcriptional factor complex with TCF and results in altered cell fate. We have previously performed a proteomic analysis of changes which occur in murine intestinal epithelium following acute b-naphthoflavone-induced deletion of APC expression (ApcΔfl/fl mice). Several proteins showed increased abundance following intestinal APC deletion and we hypothesised that some of these may represent potential biomarkers for the serological detection of the early stages of human colorectal cancer.

Aims To investigate whether two proteins which were demonstrated to be upregulated in ApcΔfl/fl intestinal epithelium by proteomic analysis, namely serine/arginine-rich splicing factor 2 (SRSF2) and ribosomal protein L6 (RPL6) show altered expression in murine and human intestinal tumours.

Methods The expression patterns of SRSF2 and RPL6 were assessed by immunohistochemistry and RTqPCR in intestinal and colorectal tumour samples obtained from ApcΔMin/+ mice aged 1, 3 and 6 months and 15 human subjects with colorectal cancer.

Results RTqPCR demonstrated a 3.9-fold increase in SRSF2 expression and a 2.5-fold increase in RPL6 expression in colon polyp tissue from 6-month old ApcΔMin/+ mice relative to colorectal tumours. Analysis of our EA expression microarray data (n=75), an independent matched aCGH and expression microarray of 997 breast cancers (BC) and an online database (Tumourscape n=1932, various epithelial tumours) revealed focal amplification of TRIM44 in 8% of EA, 6% of BC and 4% of epithelial tumours. Amplification in EA was validated using FISH on tissue microarrays (n=164). Expression of TRIM44 was copy number driven in both EA and BC and amplification conferred a poor prognosis in BC (p=0.057).

Functional work demonstrated oncogenic addiction to TRIM44 in cell line models harbouring amplifications; siRNA knockdown in HSC39 (amplification) and JIMT-1 (high expression) decreased proliferation of cells by twofold (p<0.05) and increased subG0 fraction on FACS (2.5-fold, p<0.01). In contrast, knockdown in OE19 (low expression) had no observed effect. Overexpression of TRIM44 in Hela cells using a Tet-inducible system increased proliferation (2.5-fold, p=0.0038) and invasiveness (twofold, p<0.05). Analysis of the microarray data (EA and breast) identified a potential link between TRIM44 and the mTOR pathway, and suggested sirolimus (mTOR inhibitor) as a therapeutic option. Validation of these findings were performed by IHC of amplified EA samples and showed exact co-localisation of TRIM44 and p-mTOR staining. In addition, treatment of HSC39 and JIMT-1 with RAD001 (mTOR inhibitor) showed that they were highly sensitive (IC50 <30 nm).

Conclusion TRIM44 is amplified in >5% of EA leading to increased proliferation and invasion in vitro. Our data suggest a mode of action of TRIM44 via the mTOR pathway. Evaluation of mTOR inhibitors in EA tumours is worthy of consideration and these are currently being evaluated in phase I/II oncology clinical trials in other epithelial cancers such as renal cell and lung cancer). Assessment of TRIM44 amplification status may allow selection of patients who are more likely to respond.

Competing interests None declared.