














with reports that both H pylori cagPAI and the outer membrane
protein OipA activate phosphatidylinositol kinase 1 (PDK-1),38

which phosphorylates the activation loop of PKC, leading to
enzyme maturation and activation39 (figure 6F). In contrast to
the study by Brandt et al,14 we did not detect any CagA-
dependent PKCd phosphorylation at 6e9 h post-infection.

Activated PKC regulate their substrates, including MARCKS,
vinculin and adducin.6 24 Our experiments demonstrate that H
pylori causes phosphorylation of downstream targets of PKC,
including MARCKS in a CagA- and VacA-independent manner.
The phosphorylation of PKC substrates is less prominent during
infection with the virB7 mutant strain. The most plausible
model is that the phosphorylation of PKC substrates implicates
a range of PKC isoforms that are activated independently of
T4SS (eg, PKCd and PKCq) and via T4SS (eg, PKCa) (figure 6F).

For full activation, conventional and novel PKC require DAG,
generated following PIP2 hydrolysis by PLCs. Here, we show
that both PI-PLC and PC-PLC inhibitors reduce the phosphor-
ylation of PKC substrates in H pylori-infected cells, with the PI-
PLC inhibitor being more efficient. Indeed, PI-PLC-dependent
hydrolysis of PIP2 yields, in addition to DAG, inositol 1,4,5-
triphosphate (IP3),25 27 which provokes an increase of intracel-
lular Ca2+. Thus, PI-PLC promotes activation of both DAG- and
Ca2+-dependent PKC isozymes (figure 6F).

Within PI-PLCs, PLCg1 plays an important role in PKC acti-
vation, as shown here using PLCg1-targeting siRNA. Addition-
ally, PLCg1 activation in H pylori-infected gastric epithelial cells
has been reported previously.20

Our experiments using BAPTA-AM further confirm
a contributory role of intracellular Ca2+ in PKC activation on
infection. As functional T4SS (but not CagA) is required for Ca2+

release during H pylori infection,28 we propose that T4SS is
implicated in the regulation of Ca2+-activated PKC isozymes.
Consistently, phosphorylation of Ca2+-regulated PKCa is T4SS-
dependent.
It has previously been shown that PI3K signalling is activated

by H pylori.38 40 PI3K, which phosphorylates PIP2 and leads to
PIP3 generation, has been implicated in PDK-1 activation. Here,
PI3K inhibition diminished the phosphorylation of PKC
substrates and MARCKS in response to H pylori. Moreover,
tyrosine kinases, which act up-stream of PLCs and PI3K, play
a role in PKC activation during infection with H pylori, as
demonstrated using genistein.
While studying PKC in vivo, we detected an increase of

phosphorylated PKC in patients with H pylori-induced gastritis
or gastric adenocarcinoma, which indicates that post-trans-
lational modifications of these enzymes may be crucial for H
pylori-induced pathogenesis.
Given our results demonstrating that H pylori induces the

phosphorylation of PKCa, PKCd and PKCq, we focused on their
role in infected gastric epithelial cells. All of these PKC isoforms
are involved in regulation of the cytoskeleton, adherence
junctions and barrier permeability in the gastrointestinal
epithelium.41 PKC may play a role in the pathogenesis of
H pylori-caused diseases by affecting the integrity of the gastric
epithelium.15

Figure 6 H pyloristimulates the
invasive properties of AGS cells in
a PKC-dependent fashion. (A) The cells
were treated with control or MMP-1-
targeting siRNAs, applied to the
Transwell plate and further incubated
with H pyloriP1 wt,cagAandvirB7
mutants, or PMA (4 nM) for 18 h, and
the percentage invasion through
collagen I-coated �lters towards 5%
FCS was determined. The migration
rate through uncoated �lters served as
a methodological control. (B) The
immunoblot analysis of the cells treated
with scrambled or MMP-1-targeting
siRNAs and infected with P12 wt for
3 h. (CeE) The invasion assay was
performed using cells treated with BIS I
(C) or PKC-targeting siRNAs and then
stimulated withH pyloriP12 wt or
PMA. (E) The invasion assay was
performed using cells overexpressing
constitutively active PKC isozymes. (F)
H pylori’s T4SS and T4SS-independent
factors are required for PKC activation
and MMP-1 up-regulation. *p< 0.05,
**p< 0.01 versus non-stimulated cells,
#p< 0.05, versus stimulated cells,
##p < 0.01 versus stimulated mock-
transfected cells.
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Gastric mucosa disturbances in response to H pylori impli-
cate a range of MMPs, including MMP-1.10 MMP-1 not only
degrades collagens I-III, VII, VIII and X, gelatin, and entactin,30

but also has functions extending beyond the degradation of the
ECM components. For example, MMP-1 was found in the
nucleus where it appears to confer resistance to apoptosis.42

Cytokines, growth factors and LPS induce MMP-1 synthesis
via MAPK cascades in different cell types.43 44 MMP-1 is often
up-regulated in gastric ulcers and cancer.10 45 Our data indicate
that H pylori stimulates MMP-1 synthesis in gastric epithelial
cells, which is in accordance with published data.11 19 46

Although both P1 and P12 belong to the type I cagA+vacA+-

katA+flaA+ strains, P1 was less potent in inducing MMP-1 than
the P12 strain; this finding requires further investigation. We
found that MMP-1 accumulates in membranous structures and
nuclei of infected cells. Further, our results show that similar
to PKC activation, MMP-1 expression requires both functional
T4SS and other T4SS-independent bacterial factors, for
example, OipA.34 Using the PKC inhibitor BIS I or PKC-specific
siRNAs, we discovered that PKCa, PKCd and PKCq up-regulate
MMP-1, leading to enhanced invasion by infected AGS cells.
Importantly, we observed no significant enhancement of
migration on infection. Therefore, it is apparent that H pylori-
stimulated invasion depends mainly on the proteolytic, but
not the migratory, activity of AGS cells. The inhibitory effect
of BIS I on MMP-1 expression was not restricted to AGS cells
and was also detected in tumour HCA-7 cells and non-
cancerous HSC, which suggests that this represents a common
phenomenon.

It is well established that PMA, which induces a sustained
activation of almost all of the PKC isoforms, up-regulates MMP-1.43

In this study, PMA stimulated MMP-1 synthesis, invasion and
migration of AGS cells. Depletion of one particular PKC isoform
(eg, PKCd) had a weak effect on these processes, probably
because of a contributory role of intact PKC isoforms activated
by PMA.

How does PKC regulate MMP-1? PMA has been reported to
activate ERK and JNK,47 leading to AP-1 assembly on the
MMP-1 promoter.30 43 Consistently, PMA activates MAPK and
AP-1 in AGS cells, and BIS I abolishes this effect. H pylori also
induces MAPK, c-Jun and c-Fos, and activates AP-1 in AGS
cells.33 48 We found that BIS I suppresses c-Fos and c-Jun
expression and AP-1 activity in infected cells. Surprisingly, BIS I
had no effect on the phosphorylation of ERK or JNK, which
mediate MMP-1 induction by H pylori.19 46 These observations
suggest that c-Jun and c-Fos regulation by PKC occurs apart
from MAPK. In particular, the serum response factor (SRF)
and members of the CREB/ATF family that control (together
with Elk-1) c-Fos expression (figure 6F) are regulated by several
Ca2+-dependent kinases, including PKC.49 Further, depletion of
PKCa, PKCd and PKCq suppresses H pylori-induced c-Fos
accumulation, and c-Fos depletion diminishes MMP-1 expres-
sion, indicating an important role of these PKC isoforms in c-
Fos-dependent MMP-1 up-regulation. Indeed, in uninfected
AGS cells, overexpression of active PKCa, PKCd and PKCq
increased the amount of c-Fos, AP-1 activity and invasion
through collagen I-coated filters.

With respect to the mechanistic role of H pylori virulence
factors, pronounced T4SS-dependent and T4SS-independent
processes exist.48 Future work on the identification of the
bacterial factor(s) responsible for PKC activation will give addi-
tional insights into the mechanisms of gastric mucosa coloni-
sation by H pylori and could provide a comprehensive picture of
hostemicrobial interaction.
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