

- Additional materials are published online only. To view these files please visit the journal online (http://dx.doi.org/ 10.1136/gutjin-2011-300384).
${ }^{1}$ Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
${ }^{2}$ Institute of Biochemistry, Christian-Albrechts University, Kiel, Germany
${ }^{3}$ Department of Internal Medicine I, University Hospital Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany

Correspondence to

Dr Stefan Schreiber, Professor of Medicine and Gastroenterology, Department of General Internal Medicine, Schittenhelmstr.12, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany;
s.schreiber@mucosa.de

PCR and SS share scientific responsibility and senior authorship.

Revised 13 February 2012 Accepted 16 February 2012
Published Online First 25 April 2012

mTNF reverse signalling induced by TNF α antagonists involves a GDF-1 dependent pathway: implications for Crohn's disease

Stefanie Derer, ${ }^{1}$ Andreas Till, ${ }^{1}$ Robert Haesler, ${ }^{1}$ Christian Sina, ${ }^{1}$ Nils Grabe, ${ }^{1}$ Sascha Jung, ${ }^{2}$ Susanna Nikolaus, ${ }^{3}$ Tanja Kuehbacher, ${ }^{3}$ Joachim Groetzinger, ${ }^{2}$ Stefan Rose-John, ${ }^{2}$ Philip C Rosenstiel, ${ }^{1}$ Stefan Schreiber ${ }^{1,3}$

Abstract

Objective Mechanisms of action (MoA) of anti-tumour necrosis factor α (TNF α) therapies in Crohn's disease (CD) may critically involve induction of immune cell apoptosis via membrane-bound TNF α (mTNF α) binding. Certolizumab pegol (CZP), which is effective in induction and maintenance of remission in CD lacks the ability to induce apoptosis. The aim of this study was to analyse transcriptomal responses of reverse signalling induced by the TNF α binding agents infliximab (IFX) and CZP in myelomonocytic cells. Design Induction of transcriptional patterns upon antiTNF α stimulation was assessed using oligonucleotide microarrays. mRNA expression of GDF-1/ LASS1, which was identified as a shared target, was studied in inflammatory bowel disease by real-time PCR, while signalling pathways induced by growth and differentiation factor 1 (GDF-1) were investigated using western blots and ELISA. Results IFX and CZP induced a common signature of 20 transcripts that could be categorised into control of cell cycle, transcription activation and pre-mRNA processing. We selected GDF-1/LASS1 for functional follow-up, which was found to be upregulated in inflamed CD tissues. We show that downregulation of GDF-1/LASS1 depends on autocrine release of transforming growth factor β after mTNF α ligation. We demonstrate that GDF-1 itself acts as a novel proinflammatory factor via induction of interleukin 6 and signal transducer and activator of transcription 3 and is downregulated after IFX treatment. Conclusion Commonalities in the MoA of IFX and CZP comprise modulation of non-apoptotic pathways through downregulation of proinflammatory GDF-1. Further characterisation of the molecular role of GDF-1 in complex inflammatory processes in vivo is warranted to decide whether this proinflammatory molecule is a promising therapeutic target in patients with CD .

INTRODUCTION

As many as 1.4 million people in the USA and 2.2 million in Europe have inflammatory bowel disease (IBD), a lifelong disease that can be differentiated into two major sub-phenotypes, Crohn's disease (CD) and ulcerative colitis (UC). The pathophysiology of IBD is characterised by a highly activated state of the mucosal immune system and excessive

Significance of this study

What is already known on this subject?

- Infliximab (IFX) and certolizumab pegol (CZP) are effective in the therapy of Crohn's disease (CD).
- IFX but not CZP induces apoptotic pathways.
- Transforming growth factor β (TGF β) has been shown to be induced by IFX.

What are the new findings?

- Mechanisms of action of IFX and CZP comprise modulation of non-apoptotic pathways through downregulation of proinflammatory signals via growth and differentiation factor 1(GDF-1).
- Downregulation of GDF-1 by IFX and CZP depends on autocrine release of TGF β after membrane-bound tumour necrosis factor α ligation.
- GDF-1 acts as a proinflammatory factor via induction of interleukin 6 and signal transducer and activator of transcription 3.
- GDF-1 is upregulated in inflamed tissues from patients with CD.
- GDF-1 is downregulated after IFX treatment in patients whose condition responds to IFX.

How might it impact on clinical practice in the foreseeable future?

- Studying the exact physiological role of GDF-1 in complex inflammatory processes in vivo may answer the question of whether this proinflammatory molecule could be a novel promising target in the therapy of patients with CD.
mucosal destruction. Although the aetiology is unknown, it is assumed that IBD is a multifactorial disease caused by the interplay of genetic, environmental and immunological factors. Despite advances in the understanding of the complex and diverse early events of disease precipitation, a pathophysiological hallmark of the inflammatory processes observed in CD is the preponderance of the proinflammatory cytokines, for example, tumour necrosis factor α (TNF α), interleukin 6 (IL6) and IL-12, which play critical roles in the initiation and perpetuation of inflammation in CD. TNF α is an important mediator of inflammatory
processes and is likely to be at the apex of the inflammatory cascade in CD, ${ }^{1}$ as it is increased in intestinal tissue and stools of patients with CD. Clinical evidence for efficacy of systemic inhibition of TNF α is given by the fact that a single infusion of a chimeric monoclonal anti-TNF α antibody (infliximab, IFX) has been shown to induce remission and significantly improve clinical symptoms in patients with CD in multiple studies. ${ }^{23}$

TNF α secretion represents a complex process by which membrane-bound TNF α (mTNF α) is expressed and then cleaved by TNF α-converting enzyme. ${ }^{4}$ It was reported that ligands of the TNF superfamily could act as receptors and are able to elicit bidirectional signals ('reverse signalling'), ${ }^{5}$ whereas systematic knowledge about the impact of therapeutically administered TNF α binding proteins on reverse signalling via mTNF α is still missing. ${ }^{6}$ We have previously shown that infliximab transiently activates the p38 mitogen-activated protein kinase (MAPK) and p44/42 extracellular signal-regulated kinase (ERK1/2) in monocytic cells in vitro and in vivo. A differential phosphorylation of p38 MAPK was observed in patients with CD who respond and do not respond to infliximab therapy. ${ }^{7}$ Reverse signalling events via mTNF α led to an enhanced secretion of transforming growth factor β (TGF β), which in turn was responsible for the activation of p38 and ERK1/2 and the induction of apoptosis via caspase $3 .{ }^{8}$ Further in vivo and in vitro studies also reported caspase-dependent and therefore pro-apoptotic effects of infliximab on peripheral blood mononuclear cells (PBMCs) and T cells. In contrast, the anti-TNF α compound etanercept, a recombinant TNFR2:Fc fusion protein, failed to induce apoptosis in peripheral and lamina propria lymphocytes ${ }^{9}$ and also did not induce clinical remission in patients with CD..10 Therefore, induction of apoptosis was thought to be a critical mechanism of action of anti-TNF α therapy in active CD. ${ }^{911}{ }^{12}$ This theory has been questioned since certolizumab pegol (CZP), a pegylated Fabfragment without IgG-Fc, has been shown to be clinically effective in CD but does not induce apoptosis. ${ }^{11}{ }^{13}$ Taken together, the previous studies suggest a complex intracellular signalling cascade downstream of the engagement of mTNF α by anti-TNF α compounds.

We systematically compared transcriptomal signatures elicited by the therapeutic TNF α-binding molecules CZP and IFX in myelomonocytic cells to characterise unique and shared molecular mechanisms that may help to explain the clinical efficacy of these agents in the therapy of CD. Whole genome expression screening in THP-1 cells, a human monocytic leukemia cell line, revealed 20 transcripts, which are significantly coregulated by IFX and CZP. Among these we characterised the growth and differentiation factor 1 (GDF-1), a member of the TGF β superfamily, as a novel proinflammatory mediator, which is regulated by anti-TNF α agents.

MATERIALS AND METHODS

Study population

There were four different patient cohorts in this study. Samples were categorised by the following abbreviations: hospitalised normals (HN), patients with CD and no inflammation (CD_ni), patients with CD and active inflammation (CD_i), patients with UC and no inflammation (UC_ni), patients with UC and inflammation (UC_i) and disease control patients with unspecific intestinal inflammation (DC_i).

Patient cohort I includes 109 patients: 85 patients with IBD and 24 controls for real-time PCR (RT-PCR) quantification experiments with approximately half of the samples taken from active disease in the patient groups (for detailed characterisation of all patients, see online supplementary table 1). The normal
control group (HN) included 24 subjects without abnormal endoscopy findings. Group II (20 patients: 5 HN, 5 CD_i, 5 UC_i and 5 DC_i) and group III (23 patients: $3 \mathrm{HN}, 5 \mathrm{CD}_{-} \mathrm{I}, 5 \mathrm{CD}$ _ni, 5 UC_i and 5 UC_ni) had ELISA and western blot analyses.

Group IV included 13 patients with CD with biopsies taken directly before and 1 week after infliximab therapy. Patients who showed a clinical response to IFX were defined as patients whose CD activity index (CDAI) decreased at least 70 CDAI points 2 weeks after IFX infusion, similar to seminal clinical trials. ${ }^{314}$ Of this group, eight patients were classified as clinical responders and five were classified as clinical non-responders to IFX treatment.

Biopsies were taken from the sigmoid and active disease was defined by respective disease activity indices (CDAI >150, colitis activity index (CAI) >4). Medication included 5 -aminosalicylic acid, azathioprine or glucocorticoids ($<25 \mathrm{mg}$) according to the clinical requirements of the patients, but not an active biological therapeutic regime. The endoscopies were part of regular patient management. All patients agreed to participation by giving informed consent at least 24 h before the procedure and the study was granted prior approval by the local ethics committee.

Cell culture, transfection and reagents

All analysed cell lines were purchased from the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). PBMCs were isolated from 100 ml of peripheral blood drawn from healthy volunteers and cultured as described previously. ${ }^{15}$

For stimulation experiments, the following main stimuli were used: a monoclonal mouse-human chimeric anti-TNF α antibody IFX (Remicade; Centocor, Horsham, Pennsylvania, USA), an irrelevant pegylated (Fab') $)_{2}$ fragment and a pegylated (Fab') ${ }_{2}$ fragment of a humanised monoclonal antibody CZP (CDP870; Cimzia; UCB, Belgium), recombinant human TGF β (Biosource, Invitrogen, Carlsbad, California, USA) or recombinant human GDF-1 (H00002657-P01-10, Abnova, Heidelberg, Germany). An irrelevant human IgG1 antibody (Alpha Diagnostic International Inc, San Antonio, Texas, USA) served as the control antibody.

Microarray quantification of gene transcripts

THP- 1 cells were plated at $1 \times 10^{6} / 2 \mathrm{ml}$, grown for 24 h and incubated for 6 and 24 h with IFX or CZP (both $10 \mu \mathrm{~g} / \mathrm{ml}$) or were left untreated. Colonic biopsies from anti-TNF naïve CD patients prior to or after treatment with IFX were collected and snap frozen as previously described. ${ }^{16}$ Total RNA was isolated from THP-1 cells as well as from colonic biopsies according to the manufacturer's instruction (OIAGEN Inc, Valencia, California, USA). RNA integrity was verified using an Agilent Bionanalyzer (Agilent, Böblingen, Germany) according to the manufacturer's guidelines. Microarrays (Affymetrix HG U 133 plus 2.0; Affymetrix, Santa Clara, California, USA) were prepared and processed as previously described. ${ }^{17}$ After acquiring the data using Affymetrix GeneChip Command Console (AGCC), data were normalised using the robust multiarray averaging (RMA) method (R, Bioconductor). For microarray analysis of THP-1 cell samples, differential expression was determined using three filter criteria: transcripts had to be present in all samples of at least one experimental group; as a relative measure for significance, we employed a rank-sum test, allowing a maximum of one outlier per measurement (for the two controls vs three treatment samples comparison presented here, a rank sum difference below seven corresponds to two or more outliers, a rank sum difference of seven corresponds to one outlier, while a rank sum difference of nine corresponds to no

Inflammatory bowel disease

outliers); and the fold change, which was calculated based on the ratios of the medians, had to be either bigger than 1.5 or smaller than -1.5 . Genes meeting these criteria were subjected to further analysis, which was carried out using TIBCO Spotfire (TIBCO, Palo Alto, California, USA).

The microarray data (raw and normalised) were processed according to minimal information about a microarray experiment (MIAME) guidelines and submitted to Gene Expression Omnibus ${ }^{18}$ and are accessible through GEO Series accession number GSE33585 (http://www.ncbi.nlm.nih.gov/geo/query/ acc.cgi?acc=GSE33585).

Expression data for GDF-1 was obtained from a previously published dataset in which data were normalised using the RMA method. ${ }^{16}$ Differential expression of GDF-1 within this dataset was determined using the Mann-Whitney U test.

mRNA isolation and reverse-transcription PCR

Total RNA was isolated from collected cell pellets using the RNeasy kit (OIAGEN Inc) following the manufacturer's instructions. Reverse transcription was performed by using Advantage-RT-for-PCR (Clontech, Palo Alto, California, USA) and expression of target genes and the reference transcript G3PDH was assayed by using standard PCR procedures ${ }^{15}$ and sequence-specific primers (online supplementary table 3). PCR reactions were amplified using a thermo cycler (Gene Amplification PCR System 9700, Perkin Elmer, Applied Biosystems, Foster City, California, USA). For each gene, the number of cycles was chosen directly above the detection threshold.

TaqMan real-time PCR

GDF-1/LASS1 mRNA transcript levels were measured using quantitative RT-PCR. cDNA was arrayed on 384-well plates using the expression assay Hs00242151_m1 (Applied Biosystems), which detects exon boundary 3-4 in the open reading frame of GDF-1/LASS1 on the ABI Prism 7900HT Sequence Detection System (Applied Biosystems) according to the manufacturer's protocols. Relative transcript levels were determined using the standard curve quantisation method and β actin as the endogenous control gene.

Determination of viable cell mass

The CellTiter 96 non-radioactive cell proliferation assay based on the reduction of MTS (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) by living cells was performed with THP-1 and PBMCs (20 000 cells/well/ $100 \mu \mathrm{l}$ in 96-well microtitre plate) according to the manufacturer's instruction (Promega Corp, Madison, Wisconsin, USA).

Caspase-Glo 3/7 assay

THP-1 cells and PBMCs were cultivated and stimulated with IFX or CZP in a microtitre plate (96 wells) and analysed using the Caspase-Glo $3 / 7$ assay according to the manufacturer's instructions (Promega Corp).

SDS-PAGE and immunoblotting

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDSPAGE) and immunoblotting experiments with whole protein lysates isolated from cell lines or colonic biopsy samples were performed as previously described (for antibodies see online supplementary table 4). ${ }^{15}$

ELISA

Supernatants of cell cultures were collected for measurement of secretion of IL-1 β and IL-6 by specific ELISA (BioSource Europe S.A., Nibelles, Belgium) according to the manufacturer's protocol.

For human GDF-1 and TGF β ELISA, colonic biopsy samples were collected from patients with CD and UC ($\mathrm{n}=20$), and from hospitalised patients ($\mathrm{n}=3$) and lysed according to the manufacturer's instructions using native lysis buffer (Cell Signaling Technology, Inc, Danvers, Massachusetts, USA). ELISA experiments were performed according to the manufacturer's instructions (GDF-1 ELISA, USCN Life Science Inc, Wuhan, China; TGF β ELISA, Invitrogen).

siRNA-mediated knockdown of ACVR1C

HEK293T cells were seeded at a density of $1 \times 10^{5} /$ well in six-well plates. Next day, transfection of cells with 25 nM ACVR1Cspecific small interfering RNA (siRNA) or 25 nM of negative control siRNA for 24 h was carried out using Lipofectamine2000 (Invitrogen) according to the manufacturer's manual. PBMCs were transfected with 300 nM siRNA for 24 h by electroporation using 1×10^{7} cells/sample and the Amaxa Human T cell Nucleofector Kit (Lonza, Walkersville, Maryland, USA) according to the manufacturer's instructions. Synthetic siRNA targeting ACVR1C was purchased from Applied Biosystems/Ambion (Foster City, California, USA). Target sequences were as follows: ACVR1C siRNA (ID s43499) sense 5'-GGUCCUUAUAUGACUAUUtt-3' and antisense 5^{\prime}-AAUAGUCAUAUAAGGAGCCct-3'. As control, unspecific siRNA Negative Control \#1 (Applied Biosystems/ Ambion) was used.

Representation of data and statistical analysis

Statistical significance was determined by the Mann-Whitney U test or the Wilcoxon matched pairs test (only figure 5) using GraphPad Prism 5.0 software. Results were displayed as means \pm SD. A p-value ≤ 0.05 was considered statistically significant (*) and $\mathrm{p} \leq 0.01$ was considered highly significant (**). Experiments and measurements were replicated at least three times.

RESULTS

Whole genome expression analysis

To systematically analyse cellular responses initiated by IFX and CZP in THP-1 cells a systematic expression analysis using oligonucleotide microarrays was performed.

Using rank-sum-based statistics, a total of 1058 transcripts were regulated in which 1684 regulatory events were observed (ie, some transcripts were regulated in more than one condition). In detail, 979 transcripts were regulated in response to IFX (99 upregulated, 880 downregulated), 99 transcripts were regulated in response to CZP (17 upregulated, 82 downregulated), 959 transcripts were regulated only by IFX (98 upregulated, 861 downregulated), 79 transcripts were regulated by CZP only (16 upregulated, 63 downregulated) and 20 transcripts were regulated by CZP and FIX (1 upregulated, 19 downregulated). A more detailed list of the regulated transcripts is presented in online supplementary table 2, while the 20 transcripts regulated by both CXP and IFX are presented in online supplementary table 5. The top 50 regulated genes for IFX only, IFX and CZP and for CZP only are presented in figure 1. Only among the IFXregulated transcripts was a cluster of apoptosis-associated transcripts detected, which confirms the pro-apoptotic action of IFX detected in previous studies. Analysis of this cluster revealed a downregulation of apoptosis-inhibitory genes (eg, CIAPIN1, API5 $)^{19} 20$ and an upregulation of apoptosis-promoting genes (eg, PDCD4, PDCD6, BTG1, BIRC4BP, BNIP3L) ${ }^{21-25}$ (table 1). Differential induction of pro-apoptotic and anti-apoptotic signalling events by IFX and CZP in THP-1 was validated in PBMCs by RT-PCR, MTS and Caspase Glo assays. As shown in

Figure 1 Whole genome expression analysis. THP-1 cells, a human monocytic cell line, were stimulated with infliximab or certolizumab pegol (both $10 \mu \mathrm{~g} / \mathrm{ml}$) for 6 and 24 h or were left untreated (control). Three different comparisons are presented: transcripts, regulated when comparing infliximab with control (A), certolizumab pegol with control (B), and transcripts regulated by both stimuli (C). For (A) and (B) the top 50 regulated transcripts are presented (selected by fold change and significance). Columns represent samples while each row represents a transcript. Where no gene symbol was available, the public reference was listed in brackets. Transcripts are ordered according to their expression similarities (correlation). The heatmap displays relative expression intensities (z-score normalised). Arrows to the right of each heatmap group the transcripts into regulation categories.

(LOC284702, LOC440944) and two other putative transcripts were not covered by spliced ESTs (expressed sequence tags)
corresponding to the reported oligonucleotide probe. Twelve of were not covered by spliced ESTs (expressed sequence tags)
corresponding to the reported oligonucleotide probe. Twelve of the remaining 16 transcripts could be categorised into the following main cellular processes: cell cycle regulation (PRDX6, NACA, UHMK1, C13orf25, GDF-1/LASS1), mRNA processing (RNPS1, SFRS7, HNRPA1, TncRNA), transcription activation and nuclear transport (KPNA3, HNRPA1, ANKRD12, ARHGEF19),
whereas the last four transcripts are part of the ribosomal 60S nuclear transport (KPNA3, HNRPA1, ANKRD12, ARHGEF19),
whereas the last four transcripts are part of the ribosomal 60S subunit (RPL17, RPL37A) or belong to the solute carrier family (SLC16A10 and SLC16A3) (online supplementary table 5). To verify these results, cDNA was prepared from THP-1 and PBMCs stimulated with IFX or CZP. The mRNA data for THP-1
online supplementary figure 1, API5 was upregulated by CZP (6 and 24 h) but not by IFX treatment (online supplementary figure 1A). Furthermore, MTS assays revealed that IFX led to a marked reduction of cell viability in THP-1 and PBMCs. Using this method, CZP also elicited a slight but significant reduction of cell viability in PBMCs, while no effect on THP-1 cells could be observed (online supplementary figure 1B-D). Using a luminometric assay for caspase activation, IFX, but not CZP, activated caspases $3 / 7$ in both cell types (online supplementary figure $1 \mathrm{E}, \mathrm{F}$).

Importantly, a signature of 20 shared transcripts was identified, which were significantly regulated by IFX and CZP (figure 1C). Among these, two were found to encode unknown proteins

Table 1 Overview of apoptosis-associated transcripts regulated by infliximab (IFX)

Effect of IFX	Gene	Name	Function	Reference
Downregulation	CIAPIN1	Cytokine-induced apoptosis inhibitor 1	Anti-apoptotic	19
		Apoptosis inhibitor 5	Anti-apoptotic	20
Upregulation	PDCD4	Programmed cell death 4	Anti-proliferative, pro-apoptotic	21
	PDCD6	Programmed cell death 6	Ca ${ }^{2+}$ binding, pro-apoptotic	23
	BTG1	B-cell translocation gene 1	Pro-apoptotic, anti-proliferative	24
	BIRC4BP	XIAP associated factor 1	Pro-apoptotic, antagonist of XIAP	22
	BNIP3L	BCL2/adenovirus E1B 19 kDa	Pro-apoptotic, target of p53	25
		interacting protein 3-like		

BCL2, B-cell lymphoma 2; XIAP, X-linked inhibitor of apoptosis.
cells (GDF-1/LASS1, ARHGEF19, NACA, UHMK1 and PRDX6) and for PBMCs (c13orf25, UHMK1, ARHGEF19, KPNA3, NACA, PRDX6, RNPS1) in RT-PCR experiments also reflected data received from microarray expression study (online supplementary figure 2A,C). To exclude the effects of IgG1 or pegylated structures, THP-1 cells were stimulated with irrelevant IgG1 or pegylated Fab fragment for 24 h . cDNA was analysed by RTPCR with regard to GDF-1/LASS1 expression. No regulation could be observed (online supplementary figure 2B).

GDF-1 is expressed ubiquitously in different tissues

GDF-1/LASS1 was selected for follow-up, as the protein GDF-1 represents the only soluble factor in the list of commonly regulated transcripts. This renders the protein generally acces-
sible to future neutralisation studies, for example, by specific antibodies. Moreover, GDF-1 belongs to the TGF β superfamily, members of which have been broadly implicated both in the etiopathogenesis of IBD and as important mediators of the mechanisms of action (MoA) of anti-TNF compounds. ${ }^{8} 26$

GDF-1 is transcribed into a bicistronic mRNA together with LASS1, the human orthologue of longevity assurance factor 1 from Saccharomyces cerevisiae. In addition to the bicistronic transcript variant, a second monocistronic variant encoding only LASS1 has been identified (online supplementary figure 2C). Data for the Probe-ID 229448_x_at that only detects the monocistronic variant of LASS1 mRNA were compared with data received from the Probe-ID 206397_x_at that detects the bicistronic mRNA variant GDF-1/LASS1. It could be shown that only the bicistronic mRNA

Figure 2 Growth and differentiation factor 1 (GDF-1) expression analysis. (A) Human GDF-1 proprotein and GDF-1 mature protein. The presented models illustrate processing of GDF-1 precursor to yield mature protein. Homology models were generated using GDF-1 amino acid sequence (GenBank AAB94786.1) and SWISS-Model programme software. ${ }^{27}$ (B) GDF-1/ LASS1 upregulation in colonic biopsies from patients with Crohn's disease (CD). Real-time PCR was performed with cDNA derived from sigmoidal biopsies ($n=150$). Medians of data for subgroups (HN $n=30, C D$ ni $n=31$, CD_i $n=29$, UC_ni=29, UC̄_i $n=31$) are presented as black bars. ($\overline{\mathrm{C}})$ Western blot analysis of GDF-1 protein upregulation in colonic biopsies from patients with CD. Densitometric analysis of the blot was performed with ImageJ. (D) GDF-1-specific ELISA was performed with colonic biopsies from inflamed and non-inflamed tissue from patients with $C D$ and ulcerative colitis (UC) (each $\mathrm{n}=5$). CD_i, Crohn disease inflamed; CD_ni, Crohn's disease noninflamed; UC-i, ulcerative colitis inflamed; $\mathrm{DC}_{\mathrm{i}}^{-}$, diseased controls inflamed; HN , hospitalised normals; ${ }^{*} p \leq 0.05 ; ~ * * p \leq 0.01$.

variant of GDF-1/LASS1 was regulated by IFX/CZP, whereas no alteration of LASS1 mRNA expression could be detected. Comparison of received data sets revealed a very low detection signal for Probe-ID 229448_x_at (online supplementary figure 2D).
cDNA from a human tissue panel was used for mRNA expression analysis of GDF-1/LASS1 in different tissues. GDF-1/ LASS1 transcript was ubiquitously expressed (online supplementary figure 3A) with highest expression in small intestine, brain, testis and skeletal muscles.

As GDF-1/LASS1 are translated from a single bicistronic mRNA, we investigated protein levels of GDF-1 and LASS1 in relevant cell lines to determine translation efficacy of the two putative ribosomal entry sites. GDF-1, which is initially translated as a proprotein and processed by proteolytic cleavage to yield the mature protein (figure 2A), was expressed in all examined cell lines with the highest expression in HEK293, HepG2 and Caco-2 (online supplementary figure 3B). Moderate protein expression was found in HeLa, SW480, HT-29 and THP1. While an unclear protein band, corresponding to the predicted molecular weight of LASS1 (39 kDa), was found in cell lines, virtually no protein band was detectable in lysates from intestinal biopsies of HN , patients with IBD and DC (online supplementary figure 3B,C).

GDF-1 expression is upregulated in inflamed biopsies from patients with CD

We next investigated by RT-PCR whether GDF-1/LASS1 is differentially regulated in patients with $C D(n=35)$ or UC
($\mathrm{n}=50$) compared with HN ($\mathrm{n}=24$). Normalisation of GDF-1/ LASS1 data against β-actin data and a statistical analysis indicated a significant upregulation in CD_inflamed samples compared with tissues from HN and patients with UC (figure 2B).

To verify the obtained results at the protein level, protein extracts isolated from colonic biopsies ($\mathrm{n}=20$) were applied to SDS-PAGE and immunoblotting. GDF-1 protein was upregulated in CD_inflamed samples when compared with UC_inflamed ($p \leq 0.01$) and DC_inflamed ($p \leq 0.05$) samples (figure 2C). In an additional set of colonic biopsies taken from patients with CD and UC (each $\mathrm{n}=10$) using ELISA we show a similar pattern of upregulation in inflamed tissue from patients with CD compared with CD non-inflamed and UC tissue (irrespective of inflammation state; figure 2D), although the findings do not reach formal significance levels.

GDF-1 expression is regulated by TGF β-mediated signalling

As previous findings demonstrate that mTNF α ligation by antiTNF α agents induces elevation of TGF β secretion, a putative influence of TGF β-mediated signalling transduction on GDF-1 expression was analysed. ${ }^{8}$

PBMCs were stimulated with IFX/CZP for 6 or 24 h or were left untreated and mRNA levels of TGF β and GDF-1/LASS1 were determined by RT-PCR. A reciprocal time-dependent upregulation of TGFF mRNA and downregulation for GDF-1/ LASS 1 mRNA was observed (figure 3A). In contrast, stimulation of THP-1 monocytes and PBMCs with TGF β for 12 h led to

Figure 3 Detection of influence of transforming growth factor β (TGF β)induced signal transduction on GDF-1/ LASS1 expression. (A) Inverse regulation of GDF-1/LASS1 and TGF β by infliximab (IFX) and certolizumab pegol (CZP). Peripheral blood mononuclear cells (PBMCs) were stimulated with IFX or CZP (both $10 \mu \mathrm{~g} / \mathrm{ml}$) for 6 or 24 h . Real-time PCR (RT-PCR) experiments were performed with cDNA and sequence-specific primers. (B) Downregulation of GDF-1/LASS1 mRNA by recombinant human TGF β (rhTGF β) signalling transduction. Stimulation of cells with rhTGF- β was performed for $18 \mathrm{~h} . \mathrm{mRNA}$ expression was analysed by RT-PCR. (C) Western blot analysis of GDF-1 protein regulation by rhTGF β signaling. THP-1 was stimulated with rhTGF $\beta(1 \mathrm{ng} / \mathrm{ml}, 10 \mathrm{ng} / \mathrm{ml})$ for 1 and 4 h . (D) Reversion of IFX/CZP-induced effects by TGF β blockade. THP-1 cells were stimulated with IFX and CZP (both $10 \mu \mathrm{~g} / \mathrm{ml}$) for 6 and 24 h in the presence or absence of anti-TGF β antibody ($1 \mu \mathrm{~g} / \mathrm{ml}$). mRNA expression was analysed by RT-PCR. (E) TGF β specific ELISA was performed with colonic biopsies from inflamed and noninflamed tissue from patients with Crohn's disease (CD) and ulcerative colitis (UC) (each $n=5$) as well as from hospitalised normals ($\mathrm{n}=3$). CD_i,
Crohn's disease inflamed; CD nì, Crohn's disease non-inflamed; DC_i, diseased controls inflamed; UC ii, ulcerative colitis inflamed; GDF-1, growth and differentiation factor $1 ; \mathrm{HN}$, hospitalised normals; ** $\mathrm{p} \leq 0.01$.

downregulation of GDF-1/LASS1 mRNA expression in a concentration-dependent manner. TGF β mRNA expression was not altered by TGF β stimulation (figure 3B). These findings were also reflected at the protein level for precursor and mature GDF-1 in THP-1 (figure 3C).

To further study the role of TGF β-mediated signalling transduction as a potential autocrine regulator of GDF-1 after mTNF α ligation, we analysed GDF-1/LASS1 mRNA levels in THP-1 after stimulation with IFX and CZP for 6 or 24 h in the presence or absence of anti-TGF β antibody. Pre-incubation of THP-1 with anti-pan TGF β antibody ($1 \mu \mathrm{~g} / \mathrm{ml}$) for 30 min prior to IFX stimulation enhanced GDF-1/LASS1 mRNA expression in a timedependent manner. The presence of anti-pan TGF β antibody abolished the repressive effects of both anti-TNF α compounds on GDF-1/LASS1 mRNA expression levels (figure 3D).

TGF β expression was analysed in inflamed and non-inflamed colonic biopsy samples from patients with CD and UC and from healthy normals by TGF β-specific ELISA experiments. Significant upregulated TGF β expression was found in inflamed UC tissue compared with non-inflamed UC tissue. No regulation could be detected for CD tissue in comparison to UC or HN samples (figure 3E).

GDF-1 acts as a proinflammatory cytokine by regulating IL-6

Finally, we studied the influence of recombinant human GDF-1 (rhGDF-1) protein on inflammatory responses in PBMCs.
Cells were stimulated for 6 and 24 h with various concentrations of rhGDF-1. mRNA expression of the proinflammatory cytokines $I L-6, I L-1 \beta$ and the inter-cellular adhesion molecule 1 (ICAM-1) was upregulated in a time-dependent manner with

F

Figure 4 Regulation of interleukin 6 (LL-6) via recombinant human growth and differentiation factor 1 (rhGDF-1). Peripheral blood mononuclear cells (PBMCs) were stimulated with rhGDF-1 ($1-100 \mathrm{ng} / \mathrm{ml}$) for 6 or 24 h or left untreated before being analysed by (A) real-time PCR (RT-PCR), (B) IL-6 and IL-1 β-specific ELISA or (C) western blot. (D) Western blot analysis of signal transducer and activator of transcription 3 (STAT3) activation by rhGDF-1 depended on IL-6 signalling. PBMCs were stimulated with rhGDF-1 for 6 or 24 h in the presence or absence of anti-IL-6 antibody ($1 \mu \mathrm{~g} / \mathrm{ml}$). (E) Expression analyses of ACVR1B, ACVR1C, ACVR2A or ACVR2B in PBMCs and HEK293T cells were performed by RT-PCR. All four receptors could be detected in both cell lines except for ACVR1B in PBMCs. (F) RNA interference-induced knockdown of ACVR1C. PBMCs (left panel) or HEK293T cells (right panel) were transfected with an ACVR1C-specific small interfering RNA (siRNA) or a negative control siRNA. Subsequently, cells were stimulated with rhGDF-1 ($10 \mathrm{ng} / \mathrm{ml}$) for 6 h or were left untreated. RT-PCR was performed using transcript-specific primers. ICAM-1, inter-cellular adhesion molecule 1.
peaking after 6 h of stimulation (figure 4A). Upregulation of IL-6 transcript levels was accompanied by an increased IL-6 secretion as assessed by ELISA, whereas no secretion of mature IL-1 β was observed (figure 4B).

To characterise signalling events underlying the proinflammatory effect of GDF-1 we analysed the activation of several transcription factors. While activation of transcription factor $\operatorname{Smad} 2 / 3$ was only induced after 6 h of stimulation of PBMCs with rhGDF-1 (online supplementary figure 4), we detected a strong activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) as assessed by phospho-specific western blot (figure 4C).

As IL-6 activates STAT3 phosphorylation via binding to IL-6R and gp130, it was analysed whether the observed STAT3 phosphorylation depends on autocrine IL-6 secretion induced by rhGDF-1. PBMCs were stimulated with rhGDF-1 in the presence or absence of an anti-IL-6 antibody for 6 and 24 h . Stimulation with rhGDF-1 for 6 h induced activation of STAT3 that was completely prevented by pre-incubation of cells with anti-IL-6 antibody for 30 min prior to rhGDF-1 stimulation (figure 4D). To unravel which receptor is engaged by GDF-1 signalling, expression analyses of known GDF-1-specific receptors $A C V R 1 B$ and $A C V R 1 C$ as well as of the unspecific receptors $A C V R 2 A$ and ACVR2B were performed by RT-PCR using PBMCs and HEK293 cells serving as an additional model system. As demonstrated in figure 4E, all four receptors were expressed in HEK293 cells, while in PBMCs expression of $A C V R 1 C, A C V R 2 A$ and $A C V R 2 B$ but not of ACVR1C could be detected. Therefore, knockdown of ACVR1C in PBMCs and HEK293T cells was induced by an ACVR1C-specific siRNA before stimulation of cells for 6 h with $10 \mathrm{ng} / \mathrm{ml}$ rhGDF-1. Finally, mRNA expression of ACVR1C, IL-6 or ICAM-1 was analysed by RT-PCR. In both PBMCs and HEK293 cells, GDF-1 induced upregulation of $I L-6$ or $I C A M-1$ mRNA expression was prevented by RNA interference (RNAi)-mediated knockdown of ACVR1C (figure 4F).

Downregulation of GDF1/LASS1 expression by IFX therapy is restricted to IFX responders

To underline the role of GDF-1 as an important mediator of MoA of IFX and CZP in vivo, we investigated GDF-1 levels using a microarray dataset from colonic biopsy samples of anti-TNF naïve patients with CD prior to and 1 week after IFX therapy. Data were categorised into responders and non-responders. Clinical responders to IFX were defined to be patients whose CDAI decreased at least 70 CDAI points after 1 week of IFX treatment. As presented in figure 5A, GDF-1/LASS1 was significantly downregulated after IFX therapy in IFX responders but not in IFX non-responders, whereas the proinflammatory marker transcript ICAM-1 only showed a moderate trend towards lower transcript levels (see figure 5B).

DISCUSSION

TNF α antagonists are able to bind to mTNF α and activate a physiological reverse signalling cascade. We investigated transcriptome regulation by two TNF α-binding molecules that are therapeutically active in CD . By determining the communality in regulatory mechanisms elicited by IFX and CZP we aimed to uncover essential molecular principles of MoA triggered by these two agents.

A systematic microarray-based expression analysis in THP-1 demonstrated that signalling of IFX and CZP, respectively, induces distinctly different transcriptomal responses. Commonalities include downregulation of transcripts involved in cell cycle progression. This finding corresponds to previous studies in

Figure 5 Regulation of GDF-1/ LASS1 by infliximab (IFX) therapy of patients with Crohn's disease (CD). cDNA from CD colonic biopsy samples collected prior and after IFX treatment were analysed by microarray analysis. (A) GDF-1/LASS1 expression (Probe Set ID 229448_at) was significantly downregulated after IFX treatment only in responders ($n=8$) but not in non-responders ($n=5$). (B) Inter-cellular adhesion molecule 1 (ICAM-1) (Probe Set ID 202637_s_at) expression was also found to be downregulated in responders ($\mathrm{n}=8$) but not in nonresponders ($n=5$) after IFX treatment but failed to reach statistical significance. GDF-1, growth and differentiation factor 1.
which IFX treatment was connected to inhibition of proliferative processes and the induction of cell cycle arrest in different subsets of human cells. ${ }^{26}{ }^{28}$ Both molecules have also been found to interfere with the nuclear factor κB (NF- κ B) pathway or other transcriptional activators to diminish a sustained transcription activity as detected in active CD. ${ }^{29}$ Suppression of sustained NFκB activation in intestinal biopsies of patients with CD has been previously shown after medical treatment with IFX that induced upregulation of the NF- κB inhibitor proteins $\operatorname{I\kappa B} \alpha$ and $I \kappa B \gamma{ }^{2}{ }^{30}$ The data further suggest a link of IFX and CZP to the control of pre-mRNA processing and transport. Currently, little is known about inflammatory conditions and pre-mRNA splicing events. However, alterations in the morphology of nuclear speckles and therefore pre-mRNA splicing has been detected during inflammatory stimulation of colonic epithelial cell lines ${ }^{31}$ and a first report has shown that splicing patterns may be systematically altered in IBD. ${ }^{32}$ In conclusion, IFX and CZP target fundamental processes (cell cycle, transcription activation, pre-mRNA processing) most likely through $\mathrm{mTNF} \alpha$ reverse signalling that are pivotally involved in perpetuation of chronic inflammatory responses in CD.

Among the shared transcripts that were regulated by both anti-TNF α compounds, we selected the downregulated bicistronic transcript GDF-1/LASS1 for a detailed functional follow-up.

In the present study, we detected moderate expression levels for GDF-1/LASS1 in the adult colon and high constitutive expression in the adult small intestine. We demonstrate a highly significant upregulation of mRNA levels as well as a tendency
for upregulation of protein levels of the TGF β superfamily member GDF-1 in the inflamed colonic mucosa of patients with $C D$. While the reduced dynamics of the observed GDF-1 regulation on the protein level may in part be explained by the fact that secreted proteins are sometimes harder to detect in complex intestinal tissue samples, the findings still suggest a potential role of GDF-1 in inflammatory processes in CD.

Furthermore, our data point to a negative correlation of expression levels of GDF-1 and the main family member TGF β in monocytic cells (ie, THP-1 and PBMCs). It is generally accepted that inflammatory signalling events induced by proinflammatory cytokines like TNF α and IL- 6 are counteracted by the anti-inflammatory cytokine TGF β. By binding to its receptors (TGF β RII and activin receptor-like kinases $1 / 2 / 5$), TGF β activates main downstream targets, for example Smad2/3 and MAPKs, to induce antiproliferative processes. ${ }^{33}$ However, TGF β has been linked to some cancer types and autoimmune diseases. ${ }^{33}{ }^{34}$ This study is the first to report in monocytes that ACVR1C (ALK-7)-mediated signalling transduction triggered by GDF-1 leads to a significant induction of proinflammatory cytokines and indirect activation of the transcription factor STAT3. Absence of IL-6 secretion after 24 h of stimulation with GDF-1 might point to a complex network of cellular signalling cascades, such as initiation of negative feedback loops, that controls excessive activation of signalling pathways and in that way counteracts with GDF-1 signalling cascade. It must be further noted that it could not be excluded that the second GDF-1-specific receptor ACVR1B might play an important role in GDF-1 signalling in other cellular contexts. We identified the proinflammatory cytokine IL-6 to be a major autocrine amplifier of GDF-1 signalling, as STAT3 activation downstream of GDF-1 could be prevented by a blocking IL- 6 antibody.

IL-6 is a pleiotropic cytokine that induces inflammatory and proliferative processes. ${ }^{35}$ Sustained IL-6 production and there-
with gp130-mediated activation of STAT3 have been linked to proliferative and survival effects in normal and premalignant intestinal epithelial cells and therefore are involved in tumourigenesis. ${ }^{36}$ Several publications also discussed the function of IL-6 trans-signalling via gp130 and STAT3-induced resistance to apoptosis in IBD, ${ }^{37}$ while blocking of membrane-bound and sIL6R has been found to diminish disease activity in patients with CD. ${ }^{38}$

In intestinal epithelial cells, TGF β has been shown to inhibit the IL-6/STAT3 signalling pathway via Smad2 activation. ${ }^{39}$ Activation of the TGF β downstream target Smad $2 / 3$ is blocked by the upregulation of its inhibitor Smad7. ${ }^{40}$ Vice versa, in murine models of colitis, treatment with Smad7 antisense oligonucleotides initiates restoration of TGF β signalling and therefore diminishes inflammation. ${ }^{41}$ Hyperactivation of STAT3 in murine models is accompanied by the activation of $\operatorname{Smad} 77^{42}$ and thus prevents anti-inflammatory signal transduction by TGF β.

We further detected in this study that both IFX and CZP suppress the expression of GDF-1 via a TGF β-dependent autocrine signalling loop in vitro. However, TGF β-dependent paracrine signalling cannot be excluded. Previous studies also linked the anti-inflammatory action of TNF α antagonists, in particular IFX, to the secretion of TGF β^{86} and interestingly to the inactivation of STAT3 in activated intestinal CD4+ T cells. ${ }^{43}$ Hence, it might be speculated that anti-TNF α treatment in active CD may reverse the imbalance between Smad2/3 and Smad7 by increasing TGF β release, therefore allowing TGF β to completely unfold its anti-inflammatory action (figure 6). It must be noted that a complex regulation of mucosal TGF β levels has been described in IBD in different cell types ${ }^{40}$ On the whole biopsy level, some studies demonstrated excessive production of TGF β in inflamed IBD tissues, while others suggested lesser TGF β secretion by lamina propria mononuclear cells (LMPCs) isolated

Figure 6 Model of membrane-bound tumour necrosis factor α ($\mathrm{mTNF} \alpha$) reverse signalling via infliximab (IFX)/ certolizumab pegol (CZP). TNF α antagonists induce $\mathrm{mTNF} \alpha$ reverse signalling leading to mitogen-activated protein kinase (MAPK) activation and enhanced transforming growth factor β (TGF β) secretion. TGF β in turn exerts anti-inflammatory action through triggering Smad2/3-dependent downregulation of proinflammatory mediators like growth and differentiation factor 1 (GDF-1) and interleukin 6 (IL-6). PEG, pegylated; pMAPKs, phosphorylated MAPKs; pSmad2/3, phosphorylated Smad2/3.

from patients with CD when compared with UC samples. ${ }^{40} 44$ Interestingly, whereas we detected a significant upregulation of GDF-1 levels in mucosal biopsies in IFX responders, we observed no significant regulation in TGF β expression after IFX treatment in the same patients (data not shown). Taken together with the fact that TGF β levels may not reflect the biological activity of the cytokine in the tissue (eg, as it has to be activated by proteolytic cleavage or due to Smad7 dysregulation) a more detailed investigation of cell-type specific regulatory events of this pathway after anti-TNF therapy is still warranted. In this study we have based the responder/non-responder categorisation on changes in a validated clinical activity index (CDAI) that has been used in previous anti-TNF clinical trials. ${ }^{314}$ Given the role of TGF β in regeneration and tissue repair, it will be interesting to study the detailed role of GDF-1 and TGF β in mucosal healing in this setting. Our functional data suggest that GDF-1 may serve as an additional layer of complexity that has to be taken into account.

In conclusion, this study for the first time presents converging alleys of signalling networks triggered by the TNF α antagonists IFX and CZP. One of their main targeted cellular processes seems to be the regulation of cell cycle and proliferation. Here, we reveal a completely new role of the TGF β superfamily member GDF-1 as a proinflammatory cytokine involved in inflammatory processes. It might be hypothesised that, in vivo, GDF-1 induces chronic inflammation as found in CD via sustained activation of the IL-6/STAT3 pathway that may further suppresses the antiinflammatory effects of TGF β and hence promotes ongoing proliferation of cells. ${ }^{36}{ }^{42}$ Furthermore, GDF-1 is downregulated in responders, but not in non-responders after IFX therapy. Accordingly, the mechanism of action of IFX and CZP in CD might in part be explained by interfering with GDF-1 and hence IL-6 production via a TGF β-dependent autocrine signalling loop initiated by mTNF α reverse signalling. Studying the exact physiological role of GDF-1 in complex inflammatory processes in vivo may answer the question of whether this proinflammatory molecule could be a novel promising target in the therapy of patients with CD.

Acknowledgements The authors thank the patients without whom this study would not have been possible. The endoscopy staff and the physicians Tanja Kaacksteen, Dorina Oelsner, Yasmin Brodtmann and Melanie Schlapkohl are gratefully acknowledged for their expert technical assistance. We thank Nancy Mah and the other authors of the IFX response study for providing GDF-1 mRNA expression data. Andrew Nesbitt (UCB) is acknowledged for his kind gift of pegylated Fab.
Contributors SD, AT, PR and SS designed the study. SN, TK, RH, CS, PCR and SS were involved in the recruitment and collection of samples. SD, RH and NG performed all laboratory work. SD, RH, AT and PR performed data analysis. Interpretation of data and writing of the manuscript were done by SD, RH, AT and PCR. SJ, JG, SR-J and SS proofread the manuscript prior to submission.
Funding This work was supported by an unrestricted grant of UCB S.A. (Brussels, Belgium) and the clusters of excellence Inflammation at Interfaces and The Future Ocean and the SFB877 (to SR-J, PCR and SS).

Competing interests Individual conflicts of interest are stated in the ICJME forms for SS, SN, TK, SRJ and PR.
Ethics approval Ethics approval was provided by the local ethics committee.
Provenance and peer review Not commissioned; externally peer reviewed.
Data sharing statement The authors agree to share the data.

REFERENCES

1. Schreiber S, Nikolaus S, Hampe J, et al. Tumour necrosis factor alpha and interleukin 1beta in relapse of Crohn's disease. Lancet 1999;353:459-61.
2. Nikolaus S, Raedler A, Kuhbacker T, et al. Mechanisms in failure of infliximab for Crohn's disease. Lancet 2000;356:1475-9.
3. Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet 2002;359:1541-9.
4. Black RA, Rauch CT, Kozlosky CJ, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997;385:729-33.
5. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994;76:959-62.
6. Eissner G, Kirchner S, Lindner H, et al. Reverse signaling through transmembrane TNF confers resistance to lipopolysaccharide in human monocytes and macrophages. J Immunol 2000;164:6193-8.
7. Waetzig GH, Rosenstiel P, Nikolaus S, et al. Differential p38 mitogen-activated protein kinase target phosphorylation in responders and nonresponders to infliximab. Gastroenterology 2003;125:633-4; author reply 635-6.
8. Waetzig GH, Rosenstiel P, Arlt A, et al. Soluble tumor necrosis factor (TNF) receptor-1 induces apoptosis via reverse TNF signaling and autocrine transforming growth factor-beta1. FASEB J 2005;19:91-3.
9. Van den Brande JM, Braat H, van den Brink GR, et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn's disease. Gastroenterology 2003;124:1774-85.
10. Sandborn WJ, Hanauer SB, Katz S, et al. Etanercept for active Crohn's disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 2001;121:1088-94
11. Nesbitt A, Fossati G, Bergin M, et al. Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm Bowel Dis 2007;13:1323-32.
12. Van den Brande JM, Koehler TC, Zelinkova Z, et al. Prediction of antitumour necrosis factor clinical efficacy by real-time visualisation of apoptosis in patients with Crohn's disease. Gut 2007;56:509-17.
13. Schreiber S, Rutgeerts P, Fedorak RN, et al. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn's disease. Gastroenterology 2005;129:807-18.
14. Targan SR, Hanauer SB, van Deventer SJ, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's Disease cA2 Study Group. N Engl J Med 1997;337:1029-35.
15. Waetzig GH, Seegert D, Rosenstiel P, et al. p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol 2002;168:5342-51.
16. Mah N, Pierrou S, Hammer M, et al. Molecular mechanisms of infliximab response in Crohn's disease (CD) patients. Gastroenterology 2007;132:A555-6.
17. Hasler R, Begun A, Freitag-Wolf S, et al. Genetic control of global gene expression levels in the intestinal mucosa: a human twin study. Physiol Genomics 2009;38:73-9.
18. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002;30:207-10.
19. Li X, Hong L, Zhao Y, et al. A new apoptosis inhibitor, CIAPIN1 (cytokine-induced apoptosis inhibitor 1), mediates multidrug resistance in leukemia cells by regulating MDR-1, Bcl-2, and Bax. Biochem Cell Biol 2007;85:741-50
20. Morris EJ, Michaud WA, Ji JY, et al. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet 2006;2:e196
21. Goke R, Gregel C, Goke A, et al. Programmed cell death protein 4 (PDCD4) acts as a tumor suppressor in neuroendocrine tumor cells. Ann N Y Acad Sci 2004;1014:220-1.
22. Straszewski-Chavez SL, Visintin IP, Karassina N, et al. XAF1 mediates tumor necrosis factor-alpha-induced apoptosis and X-linked inhibitor of apoptosis cleavage by acting through the mitochondrial pathway. J Biol Chem 2007;282:13059-72.
23. Tarabykina S, Mollerup J, Winding P, et al. ALG-2, a multifunctional calcium binding protein? Front Biosci 2004;9:1817-32.
24. Lee \mathbf{H}, Cha S, Lee MS, et al. Role of antiproliferative B cell translocation gene-1 as an apoptotic sensitizer in activation-induced cell death of brain microglia. J Immunol 2003;171:5802-11.
25. Fei P, Wang W, Kim SH, et al. Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell 2004;6:597-609.
26. Gunnlaugsdottir B, Skaftadottir I, Ludviksson BR. Naive human T-cells become nonresponsive towards anti-TNFalpha (infliximab) treatment in vitro if co-stimulated through CD28. Scand JImmunol 2008;68:624-34.
27. Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006;22:195-201.
28. Mitoma H, Horiuchi T, Hatta N, et al. Infliximab induces potent anti-inflammatory responses by outside-to-inside signals through transmembrane TNF-alpha. Gastroenterology 2005;128:376-92.
29. Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut 1998;42:477-84.
30. Guidi L, Costanzo M, Ciarniello M, et al. Increased levels of NF-kappaB inhibitors (IkappaBalpha and IkappaBgamma) in the intestinal mucosa of Crohn's disease patients during infliximab treatment. Int J Immunopathol Pharmacol 2005;18:155-64.
31. Zhu YQ, Lu Y, Tan XD. Monochloramine induces reorganization of nuclear speckles and phosphorylation of SRp30 in human colonic epithelial cells: role of protein kinase C. Am J Physiol Cell Physiol 2003;285:C1294-303.
32. Hasler R, Kerick M, Mah N, et al. Alterations of pre-mRNA splicing in human inflammatory bowel disease. Eur J Cell Biol 2011;90:603-11.
33. Moustakas A, Pardali K, Gaal A, et al. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett 2002;82:85-91.
34. Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta 2008;1782:197-228.
35. Rose-John S, Mitsuyama K, Matsumoto S, et al. Interleukin-6 trans-signaling and colonic cancer associated with inflammatory bowel disease. Curr Pharm Des 2009;15:2095-103.
36. Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009;15:103-13.
37. Atreya R, Neurath MF. Signaling molecules: the pathogenic role of the IL-6/STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer. Curr Drug Targets 2008;9:369-74.
38. Ito H, Takazoe M, Fukuda Y , et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease. Gastroenterology 2004;126:989-96; discussion 947.
39. Walia B, Wang L, Merlin D, et al. TGF-beta down-regulates IL-6 signaling in intestinal epithelial cells: critical role of SMAD-2. Faseb J 2003;17:2130-2.
40. Monteleone G, Boirivant M, Pallone F, et al. TGF-beta1 and Smad7 in the regulation of IBD. Mucosal Immunol 2008;1(Suppl 1):S50-3.
41. Boirivant M, Pallone F, Di Giacinto C, et al. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta1-mediated suppression of colitis. Gastroenterology 2006;131:1786-98.
42. Jenkins BJ, Grail D, Nheu T, et al. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nat Med 2005;11:845-52.
43. Rosenstiel P, Agnholt J, Kelsen J, et al. Differential modulation of p38 mitogen activated protein kinase and STAT3 signalling pathways by infliximab and etanercept in intestinal T cells from patients with Crohn's disease. Gut 2005;54:314-15; author reply 316.
44. Del Zotto B, Mumolo G, Pronio AM, et al. TGF-beta1 production in inflammatory bowel disease: differing production patterns in Crohn's disease and ulcerative colitis. Clin Exp Immunol 2003;134:120-6.

Supplementary Figure 1

Supplementary Figure 1. Apoptosis induction by IFX and CZP. (A) PBMCs were stimulated with IFX or CZP for 24h or were left untreated. Total RNA was extracted to perform RT-PCR with specific primer pair for anti-apoptotic transcript apoptosis inhibitor 5 (API5) or G3PDH. (B) Stimulation of THP-1 cells for 0, 0.5, 6, 12 and 24 hours with $10 \mu \mathrm{~g} / \mathrm{ml}$ IFX or CDP870. Cell viability was determined by MTS assay. (C+D) THP-1 cells and PBMCs were stimulated with IFX or CDP870 ($1-100 \mu \mathrm{~g} / \mathrm{ml}$) and analyzed by MTS assay. (E) THP-1 monocytes were stimulated with IFX or CDP870 ($10 \mu \mathrm{~g} / \mathrm{ml}$) for 24 hours in a 96 well plate. Activation of caspases $3 / 7$ was assayed using the CaspaseGlo $3 / 7$ assay. Foldchanges of the data are presented. (F) PBMCs were stimulated with IFX or CDP870 (1-100 $\mu \mathrm{g} / \mathrm{ml}$) for 16 hours in a 96 well plate and assayed by the CaspaseGlo $3 / 7$ assay. Medians of three independent measurements are shown. RLU= relative light units, ${ }^{*}=p$ values $\leq 0.05,{ }^{* *}=p$ values ≤ 0.01.

Supplementary Figure 2

Supplementary Figure 2. Verification of whole genome expression study. Verification of microarray experiment by RT-PCR. One experiment is shown experimentally. (A) THP-1 cells were stimulated with IFX or CZP for $0,0.5,2,6,12$ and 24 h . Total RNA was extracted to perform RT-PCR with specific primer pairs for GDF-1/LASS1, PRDX6, ARHGEF19, NACA, UHMK1 and G3PDH. (B) THP-1 cells were stimulated with IFX, CZP, an irrelevant IgG1 antibody or irrelevant pegylated Fab fragment (all $10 \mu \mathrm{~g} / \mathrm{ml}$) for 24 hours or were left untreated. cDNa was prepared and RT-PCR was performed using GDF-1/LASS1 and G3PDH specific primer pairs. (C) PBMCs were stimulated with IFX or CZP for 0, 6, and 24 h . Total RNA was extracted to perform RT-PCR with specific primer pairs for c13orf25, UHMK1, ARHGEF19, KPNA3, NACA, PRDX6, RNPS1 and G3PDH. (D) Regions of amplification on Affymetrix GeneChip U133 plus 2.0. mRNA structures for bicistronic GDF-1/LASS1 and monocistronic LASS1 are represented. Probesets for the bicistronic (206397_x_at) and the monocistronic (229448_x_at) mRNA variants are
shown as black boxes. (E) Relative mRNA expression of GDF-1 and LASS1. Data for bicistronic GDF-1/LASS1 (206397_x_at) and monocistronic LASS1 (229448_x_at) are presented as medians with corresponding standard deviations.

Supplementary Figure 3

C

Supplementary Figure 3. GDF-1 expression analysis. (A) Tissue-specific expression pattern of GDF-1/LASS1. cDNA from a human tissue panel was used in RT-PCR experiments for mRNA expression analysis of GDF-1/LASS1. The housekeeping gene G3PDH was used as endogenous control. (B) Immunoblotting analysis of GDF-1 and LASS1 in different cell lines. Blotting of β-actin served as a loading control. (C) Immunoblotting analysis of LASS1 in inflamed colonic biopsies from CD patients (CD_i), UC patients (UC_i), diseased controls (DC_i) as well as non-inflamed colonic biopsies from healthy controls (HN). Blotting of G3PDH served as a loading control.

Supplementary Figure 4

Supplementary Figure 4. GDF-1 triggers Smad2/3 activation in PBMCs. Immunoblotting experiments were performed using PBMCs- untreated or stimulated with GDF-1 for 6 or 24 hours at various concentrations (1-100 ng/ml). Blotting of Smad2/3 served as a loading control for phosphorylated Smad2/3 protein (left panel). Densitometric analysis was performed using ImageJ (right panel).

Supplementary Table 1

Overview of study population. HN=hospitalized normals, CD=Crohn's disease patients, UC=ulcerative colitis patients, $\mathrm{DC=diseased}$ patients, _i=patients with inflammation, _ni=patients with no inflammation, n=number of patients. Disease activity (CDAI (CD)/CAI (UC)

		Males (n)	Females (n)	Total	Age [years]	CDAI	5-ASA	corticosteroids	azathioprine	antibiotics
$\begin{aligned} & \text { I: Real- } \\ & \text { Time PCR } \end{aligned}$	HN	10	14	24	50 (26-73)	N/A	(-)	(-)	(-)	(-)
	CD_ni	8	8	16	39 (26-69)	110-170	5	3	6	
	$C D_{1} i$	7	12	19	30 (18-46)	180-340	7	9	7	2
	UC_ni	10	14	24	37 (16-64)	2-4	12	5	11	(-)
	UC_i	12	14	26	36.5 (19-61)	5-9	14	11	9	1
$\begin{aligned} & \text { II: SDS- } \\ & \text { PAGE } \end{aligned}$	HN	3	2	5	26-70	N/A	(-)	(-)	(-)	(-)
	$C D$ _ i	2	3	5	22-41	160-300	3	3	3	
	UC_i	3	2	5	27-40	7-9	4	4	3	
	DC_i	1	4	5	36-72	N/A	(-)	(-)	(-)	2
III: GDF-1 /TGF- β ELISA	CD_ni	3	2	5	18-41	100-160	3	1	3	
	$C D$ _	3	2	5	21-60	220-280	4	2	3	
	UC_ni	1	4	5	27-61	2-4	5	2	2	
	UC_i	2	3	5	20-41	6-8	4	3	3	1
	HN	2	1	3	39-60	N/A	(-)	(-)	(-)	(-)
IV: Microarray analysis	Pre IFX	5	8	13	33-50	194-340	11	5	7	1
	Post IFX	5	8	13	N/A	112-287	N/A	N/A	N/A	N/A

Group I: This group comprised 35 CD and 50 UC patients. Biopsies were taken from the sigmoid, with approximately half of the biopsies being taken from patients with active disease. Patients were on 5-ASA azathioprin or glucocorticoids ($\leq 25 \mathrm{mg}$), but not on an active biological therapeutic regime according to their clinical requirements. The normal control group included 24 disease-free subjects with no abnormal findings in the colonic endoscopy. The inflammatory activity at endoscopy was independently scored by two investigators. Group II and III followed the same criteria given in I and were randomly selected from the biopsy bank. The SDS Page analysis included 5 inflammatory disease controls (3 diverticulitis, 2 suspected infections with signs of inflammation).

Biopsies from IFX-treated patients (Group IV) were taken from the sigmoid colon before IFX infusion and one week after IFX infusion. Clinical responders to IFX were defined to be those patients whose Crohn's disease activity index (CDAI) (Best et al. 1976) decreased at least 70 CDAI points after one week of IFX treatment. Based on this definition, eight patients were classified as clinical responders and five patients were classified as clinical non-responders to IFX treatment. Patient characteristics are given in Suppl. Table 1. All patient related procedures were approved by the university hospital's ethics committee. All patients agreed to participation by giving informed consent at least 24 hours before prior to the study.

Supplementary Table 2

Supplementary Table 2. Transcripts, regulated in response to IFX and/or CZP. Induction values for all transcripts regulated in response to IFX or CZP treatment after 6h or 24 h or independent of the timepoint. All transcripts are displayed with their official gene symbol, representative public ID and the induction values. Transcripts which are listed more than once origin from different sequences with different public IDs. Induction is presented as signed fold change, based on the ratios of the medians for each experimental group ("+" for upregulation; "-" for downregulation). Stars indicate that the transcript was present in at least one of the compared groups, its induction value was greater than $1.50 /-1.50$ and resulted in a positive rank sum test with a maximum of one outlier (determined by a rank sum test; * one outlier per measurement; ** no outliers in the measurement). Numbers without stars indicate that not all criteria were met.

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
(N/A)	AA173465	+1.67	+1.36	+1.54**	+1.48	+1.22	+1.36
(N/A)	AA181060	-1.33	-1.59*	-1.39	-1.41	-1.35	-1.40
(N/A)	AA833832	+1.85	+1.76	+1.77*	-1.06	+1.09	+1.02
(N/A)	Al140917	-1.52**	-1.49	-1.50**	-1.02	-1.11	-1.06
(N/A)	Al146812	-1.45	-1.63**	-1.54**	-1.13	-1.14	-1.13
(N/A)	Al636016	-1.58**	-1.49	-1.54**	-1.13	-1.12	-1.13
(N/A)	Al692267	-1.60**	-1.23	-1.55**	+1.07	-1.17	-1.03
(N/A)	Al697657	+1.16	-1.60*	+1.02	-1.04	+1.09	-1.01
(N/A)	Al825302	-1.61**	-1.41	-1.43	-1.35	-1.24	-1.29
(N/A)	AL523380	-1.31	-1.58**	-1.41	-1.14	-1.19	-1.16
(N/A)	AL536101	-1.78**	-1.58**	-1.67**	+1.12	-1.08	-1.01
(N/A)	AL561657	-1.88**	-1.30	-1.40	+1.10	+1.08	+1.09
(N/A)	AV687517	+1.71	+1.52	+1.58**	+1.34	+1.09	+1.14
(N/A)	AW009436	-1.55*	-1.36	-1.45	-1.63**	-1.20	-1.24
(N/A)	AW162758	-1.16	-1.06	-1.15	-1.72*	-1.18	-1.25
(N/A)	AW169159	-1.55**	-1.48	-1.49	-1.14	-1.09	-1.11
(N/A)	AW296194	-1.56**	-1.00	-1.52**	-1.01	+1.01	+1.00
(N/A)	AW367571	-1.39	-1.31	-1.35	-1.78**	-1.43	-1.63**
(N/A)	AW450675	-1.60**	-1.97**	-1.83**	-1.17	-1.24	-1.22
(N/A)	AW450929	-1.35	-1.55*	-1.44	-1.47	-1.24	-1.34
(N/A)	AW500340	+1.75	+1.60	+1.68**	+1.06	+1.06	+1.06
(N/A)	AW629423	+1.20	-1.66*	-1.04	-1.02	-1.39	-1.19
(N/A)	AW959771	+1.03	-1.81**	-1.09	-1.02	-1.02	-1.02
(N/A)	BC042959	-1.67**	-1.39	-1.52**	+1.03	+1.16	+1.06
(N/A)	BE080109	-1.01	-1.66*	-1.05	-1.03	+1.01	-1.01
(N/A)	BE312027	+1.74	+1.45	+1.66*	+2.07	+1.50	+1.52
(N/A)	BE348291	-1.47	-1.58**	-1.52**	-1.46	-1.17	-1.21
(N/A)	BE780373	+2.96	+2.53	+2.86*	-1.02	+1.06	+1.02
(N/A)	BE866854	-1.55**	-1.30	-1.31	-1.07	-1.21	-1.08
(N/A)	BF115739	-1.52**	-1.29	-1.38	-1.28	-1.22	-1.25
(N/A)	BF515894	+1.69	+1.38	+1.46	-1.55**	-1.13	-1.24
(N/A)	BG107419	-1.71**	-1.46	-1.59**	+1.12	-1.14	-1.01
(N/A)	BG111938	-1.82**	+1.06	-1.70**	-1.17	+1.07	-1.05
(N/A)	BG285837	-1.18	-1.59**	-1.41	-1.39	-1.18	-1.38
(N/A)	N24703	-1.53*	-1.45	-1.46	-1.04	-1.10	-1.08
(N/A)	NM_013307	-1.80*	-1.12	-1.38	-2.21**	-1.84**	-2.01**
(N/A)	U95006	-1.52**	-1.54**	-1.53**	+1.06	-1.10	+1.05
76P	BC000966	-1.30	-1.50**	-1.33	-1.01	+1.02	+1.00
ABCB10	AF277184	-1.41	-1.54**	-1.44	-1.05	+1.04	-1.01
ABCE1	Al002002	-1.12	-1.71**	-1.18	-1.12	+1.00	-1.08
ABHD12	AW303865	-1.51**	-1.53**	-1.52**	-1.29	-1.42	-1.35
ACD	NM_022914	-1.73**	-1.71**	-1.72**	-1.05	-1.00	-1.03
ACIN1	NM_014977	-1.55**	+1.31	-1.19	+1.13	+1.09	+1.12
ACOT7	AL031848	-1.39	-1.53**	-1.45	-1.30	-1.09	-1.29
ACOT7	NM_007274	-1.71**	-1.43	-1.62**	-1.13	-1.05	-1.10
ACTR5	AL133519	-1.31	-1.52**	-1.36	-1.12	-1.34	-1.22
ACTR5	NM_024855	-1.61**	-1.26	-1.50**	-1.21	-1.19	-1.20
ADD3	Al638420	+3.73	+1.80	+2.74**	+1.02	-1.06	-1.02
ADSS	AA628948	-1.06	-1.54**	-1.16	-1.13	-1.03	-1.12
AGPAT1	U56417	-1.56**	+1.47	-1.31	+1.63	+1.10	+1.46
AHCTF1	AL080144	-1.58**	-1.48	-1.53**	-1.04	-1.04	-1.04
AHSA1	NM_012111	-1.67**	-1.60**	-1.63**	+1.10	+1.06	+1.09
AKAP1	NM_003488	-1.57**	-1.06	-1.33	+1.03	-1.03	+1.00
AKT1S1	BE790884	-1.78**	-1.01	-1.09	+1.52	+1.16	+1.51
ALCAM	AA156721	-1.53**	-1.42	-1.47	-1.13	-1.10	-1.11
ALCAM	BF242905	-1.45	-1.55**	-1.50	-1.21	-1.11	-1.15

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
ALDH18A1	NM_002860	-1.67**	-1.51**	-1.61**	-1.03	-1.15	-1.06
ALDH3B1	BC002553	+1.74	+1.43	+1.51*	-1.06	+1.08	+1.01
ALKBH1	NM_006020	-1.26	-1.50**	-1.32	-1.04	-1.07	-1.06
AMZ2	AL524467	+1.90	+1.41	+1.58**	+1.12	+1.02	+1.06
ANAPC1	NM_022662	-1.65**	-1.13	-1.61**	-1.06	-1.04	-1.05
ANKRD12	AW572909	-1.36	-1.50**	-1.43	-1.22	-1.52**	-1.31
ANKRD15	D79994	-1.88**	-1.31	-1.79**	+1.08	+1.09	+1.08
ANKRD17	Al986295	-1.59**	-1.38	-1.48	+1.16	-1.02	+1.05
ANKRD41	NM_152363	-1.68**	-1.60**	-1.61**	+1.05	+1.02	+1.04
ANKRD50	BF196876	-1.57**	-1.24	-1.41	-1.19	-1.20	-1.20
ANLN	NM_018685	-1.77**	-1.79**	-1.78**	-1.09	-1.05	-1.07
ANP32A	NM_006305	-1.23	-1.91*	-1.28	-1.15	-1.37	-1.27
ANP32E	NM_030920	-1.00	-1.70**	-1.15	-1.15	+1.03	-1.14
AOF2	AB011173	-1.52**	-1.17	-1.43	+1.01	-1.03	-1.03
AP1G1	AW673972	-1.54**	-1.34	-1.47	+1.04	-1.07	+1.03
AP1S3	AF393369	-1.10	-1.70**	-1.30	+1.03	-1.04	-1.02
AP1S3	AF393369	+1.00	-1.79**	-1.23	-1.04	-1.06	-1.05
AP3D1	AF130042	-1.30	-1.08	-1.12	-1.69**	+1.18	-1.19
AP3D1	Al424923	-1.15	+1.06	+1.00	-1.55**	+1.14	-1.12
APBB2	U62325	-1.54**	-1.72	-1.71**	-1.29	-1.22	-1.28
API5	AF229254	-1.11	-1.59**	-1.28	-1.40	-1.26	-1.33
APOBEC3B	NM_004900	+1.96	+1.86	+1.93*	-1.05	+1.05	+1.00
AQP3	N74607	-1.76**	-1.68**	-1.72**	+1.08	+1.02	+1.07
ARF1	BI868311	-1.62**	-1.28	-1.40	-1.33	-1.34	-1.33
ARFGEF1	AK025637	-1.51**	-1.31	-1.50	-1.04	+1.04	-1.02
ARHGDIA	BC005851	-1.71**	+1.10	-1.46	+1.02	+1.05	+1.04
ARHGDIA	NM_004309	-1.59**	+1.16	-1.34	+1.16	+1.10	+1.13
ARHGEF19	AW170520	-1.50**	-1.34	-1.42	-1.33	-1.52**	-1.45
ARL1	NM_001177	-1.11	-1.59**	-1.23	-1.06	-1.10	-1.07
ARL11	NM_138450	+1.55	+1.36	+1.54*	+1.00	+1.08	+1.02
ARMET	NM_006010	-1.77**	-1.82**	-1.80**	+1.21	+1.06	+1.20
ARS2	AI523895	-1.50**	-1.31	-1.46	-1.01	-1.02	-1.02
ARS2	BE646076	-1.46	-2.10	-1.53**	-1.11	+1.22	+1.10
ARS2	NM_015908	-1.73**	-1.27	-1.67**	-1.01	-1.09	-1.01
ARSD	AU144083	+2.18	+1.39	+1.87**	+1.03	+1.05	+1.04
ASAH1	U47674	+1.57	+1.52	+1.55*	-1.05	+1.03	-1.03
ASCC3	AA156961	-1.54**	-1.38	-1.43	-1.07	+1.04	-1.03
ASPHD1	BC034275	-1.59**	-1.47	-1.52**	-1.05	-1.08	-1.06
ASPM	NM_018123	-1.53**	-1.39	-1.40	-1.13	+1.09	-1.07
ASXL1	AL117518	-1.54**	-1.09	-1.34	-1.01	+1.01	-1.00
ATAD2	NM_014109	-1.59**	-1.41	-1.47	-1.03	+1.02	-1.01
ATAD3A	AL043161	-1.56**	-1.25	-1.48	-1.00	-1.07	-1.03
ATAD3A	NM_031921	-1.74**	-1.36	-1.73**	-1.27	-1.14	-1.26
ATAD3B	BC002542	-1.53**	-1.57**	-1.55**	-1.16	-1.23	-1.20
ATAD3B	AW593303	-1.52**	-1.41	-1.49	-1.26	-1.16	-1.16
ATP2A2	M23114	-1.68**	-1.28	-1.58**	+1.13	+1.02	+1.08
ATPIF1	BC001867	-1.70**	-1.34	-1.51**	-1.32	-1.19	-1.20
ATR	U49844	-1.52**	-1.42	-1.47	-1.04	-1.05	-1.05
ATR	U49844	-1.52**	-1.33	-1.34	-1.05	-1.09	-1.07
BAG2	AF095192	-1.25	-1.86**	-1.58**	-1.07	+1.13	-1.01
BAP1	AB002534	-1.60**	+1.61	-1.39	+1.07	+1.02	+1.05
BAT2	AF129756	-1.62**	+1.57	-1.48	+1.41	+1.09	+1.25
BAT2	NM_004638	-1.56**	+1.59	-1.42	+1.41	+1.07	+1.31
BAT3	BG028844	-1.55**	+1.47	-1.51**	+1.16	-1.06	+1.07
BCCIP	Al373643	-1.63**	-1.52**	-1.57**	-1.22	-1.21	-1.22
BCCIP	BE464077	-1.57**	-1.75**	-1.63**	+1.08	-1.05	+1.05
BCLAF1	AF249273	-1.01	-1.61*	-1.09	-1.04	+1.13	+1.01
BDH1	BC005844	-1.62**	-1.68**	-1.65**	-1.16	-1.22	-1.19
BICD2	Al934125	-1.51**	+1.04	-1.48	+1.09	+1.15	+1.12
BICD2	N45111	-1.65**	-1.07	-1.47	+1.01	-1.01	-1.01
BIRC4BP	NM_017523	+1.95	+1.44	+1.85*	-1.00	+1.04	+1.02
BLM	NM_000057	-1.59**	-1.49	-1.54**	-1.02	-1.10	-1.05
BLVRA	AA740186	-1.43	-1.69**	-1.50**	-1.07	-1.03	-1.07
BLVRA	BC005902	-1.56**	-1.45	-1.48	+1.07	-1.07	+1.03
BLVRA	NM_000712	-1.63**	-1.54**	-1.57**	+1.01	-1.06	-1.03
BMP2	NM_001200	-1.52**	-1.25	-1.49	-1.04	-1.27	-1.21
BMS1L	NM_014753	-1.61**	-1.09	-1.51**	+1.16	-1.03	-1.01
BNIP3L	AF060922	+2.07	+1.72	+1.94*	-1.25	+1.02	-1.08
BOP1	BG491842	-1.57**	-1.06	-1.46	-1.14	+1.03	-1.01
BRCA1	AF005068	-1.72**	-1.43	-1.71**	-1.12	-1.10	-1.11
BTG1	AL535380	+2.14	+1.75	+2.09*	+1.04	+1.01	+1.03
BUB1B	NM_001211	-1.50	-1.51**	-1.51**	-1.08	+1.01	-1.05
BZW1	AL518328	-1.07	-1.53**	-1.10	-1.06	+1.04	-1.03
C10orf137	AL050102	-1.69**	-1.44	-1.56**	-1.12	+1.02	-1.12

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
C11orf30	AK023651	-1.67**	-1.32	-1.50	-1.12	-1.15	-1.14
C11orf48	BC001434	-1.34	-1.56**	-1.48	-1.04	-1.05	-1.05
C12orf29	BF439204	-1.56**	-1.95**	-1.81**	-1.16	-1.22	-1.19
C12orf4	NM_020374	+1.01	-1.51**	-1.15	-1.21	-1.13	-1.19
C12orf48	AI224977	-1.47	-1.78**	-1.70**	-1.13	+1.14	-1.13
C12orf48	NM_017915	-1.29	-1.68**	-1.29	-1.08	-1.08	-1.08
C12orf52	AI937468	-1.77**	-1.45	-1.57**	-1.09	-1.03	-1.05
C13orf23	NM_025138	-1.56**	-1.26	-1.47	+1.20	+1.19	+1.20
C13orf25	AA256157	-1.61**	-1.67**	-1.64**	-1.55**	-1.36	-1.53**
C13orf32	AV730849	-1.52**	-1.44	-1.48	-1.05	+1.21	-1.02
C15orf15	AF165521	+1.93	+1.76	+1.91*	+1.01	+1.00	+1.01
C15orf42	Al638593	-1.64**	+1.09	-1.53**	+1.06	-1.08	-1.01
C16orf33	NM_024571	-2.05**	-2.03**	-2.04**	+1.04	-1.12	+1.02
C16orf34	AK023154	-1.54**	-1.34	-1.48	-1.03	-1.12	-1.05
C16orf53	NM_024516	-1.44	-1.51*	-1.47	-1.15	-1.02	-1.11
C16orf54	BC025741	+1.55	+1.47	+1.54*	+1.17	+1.17	+1.17
C16orf73	BF062257	-1.53**	-1.48	-1.50**	-1.15	-1.22	-1.18
C1orf106	NM_018265	-1.50**	-1.14	-1.40	+1.13	-1.13	-1.12
C1orf112	NM_018186	-1.75**	-1.72**	-1.73**	-1.01	-1.10	-1.01
C1orf155	AI056992	-1.85**	-2.03**	-1.93**	-1.30	-1.25	-1.28
C1orf163	NM_023077	-1.50	-1.62**	-1.54**	-1.34	+1.05	-1.17
C1orf19	Al264325	+1.72	+1.34	+1.57**	-1.25	-1.03	-1.14
C1orf33	NM_016183	-1.55**	-1.60**	-1.59**	-1.09	-1.09	-1.09
C1orf41	NM_016126	-1.46	-1.66**	-1.55**	-1.04	-1.00	-1.03
C1orf63	AF247168	+1.29	+1.16	+1.20	-1.52**	-1.27	-1.47
C1orf79	AF277181	-1.82**	-1.70**	-1.81**	-1.27	-1.25	-1.26
C1orf79	AF277181	-1.74**	-1.70**	-1.74**	-1.13	-1.08	-1.11
C1orf79	Al339426	-2.34**	-2.34**	-2.34**	-1.42	-1.29	-1.37
C20orf27	Al761506	-1.60**	-1.46	-1.53**	-1.07	+1.05	-1.00
C20orf59	NM_022082	-1.70**	-1.24	-1.67**	-1.12	-1.03	-1.07
C21orf2	AW300217	-1.58**	-1.21	-1.50**	-1.17	-1.12	-1.15
C21orf66	BC030539	+1.01	-1.42	-1.19	-1.60**	-1.30	-1.32
C21orf66	NM_013329	-1.46	-1.87**	-1.51**	-1.25	-1.28	-1.27
C3orf19	AF151046	+1.62	+1.30	+1.57**	+1.19	+1.11	+1.12
C3orf38	Al458735	-1.00	-1.57**	-1.10	-1.06	-1.01	-1.04
C3orf39	BE856822	-1.52**	+1.07	-1.40	+1.12	-1.02	+1.05
C4orf30	NM_017741	-1.12	-1.20	-1.16	-1.62**	-1.39	-1.47
C4orf32	Al110850	+1.94	+1.79	+1.85**	+1.01	+1.07	+1.04
C6orf136	BF224092	-1.60**	+1.11	-1.30	+1.08	-1.00	+1.04
C6orf182	BC033448	-1.07	-1.62**	-1.28	-1.33	+1.02	-1.28
C6orf55	BF241590	-1.04	-1.72**	-1.07	+1.02	+1.05	+1.03
C6orf68	BG168247	-1.33	-1.74**	-1.39	-1.16	-1.03	-1.15
C8orf33	NM_023080	-1.52**	-1.36	-1.39	-1.14	-1.13	-1.14
C9orf140	AW250904	-1.64**	-1.04	-1.51**	+1.15	-1.04	+1.06
C9orf5	BG402553	-1.48	-1.55**	-1.52**	-1.01	-1.15	-1.11
C9orf64	AW983691	+1.62	+1.55	+1.58**	+1.10	+1.15	+1.12
C9orf86	BE783949	-2.01**	+1.49	-1.67**	-1.02	-1.01	-1.02
CABIN1	AB002328	-1.77**	-1.01	-1.21	-1.01	+1.01	+1.00
CAD	NM_004341	-1.95**	+1.24	-1.84**	+1.11	+1.13	+1.12
CALR	AI348935	-1.17	+1.02	-1.16	+1.70	+1.23	+1.58**
CALR	BE251303	-1.65**	-1.27	-1.59**	+1.21	+1.09	+1.15
CALR	NM_004343	-1.43	-1.55	-1.49	+3.06	+1.12	+2.48**
CARS	AW292273	+3.73	+3.34	+3.51*	-1.37	-1.23	-1.25
CART1	NM_006982	+1.65	+1.56	+1.56*	+1.03	-1.06	-1.05
CASC5	NM_020380	-1.35	-1.46	-1.36	-1.53**	-1.03	-1.24
CASP2	BE139156	+1.69	+1.28	+1.50	+1.72	+1.47	+1.56**
CBX2	BE514414	-1.62**	-1.06	-1.45	-1.12	-1.10	-1.11
CBX3	BU683892	-1.10	-1.46	-1.26	-1.55**	-1.36	-1.43
CC2D1B	AW514783	-1.69**	+1.12	-1.24	-1.03	-1.12	-1.09
CCDC124	AW248770	-1.78**	-1.67**	-1.72**	-1.24	-1.10	-1.12
CCDC47	AF113221	-1.00	-1.53*	-1.07	-1.16	+1.12	-1.06
CCDC58	BF001285	-1.55**	-1.61**	-1.55**	-1.03	-1.18	-1.11
CCDC86	NM_024098	-1.84**	-1.75**	-1.80**	-1.09	-1.12	-1.10
CCDC95	AA743390	-1.58**	-1.29	-1.35	+1.46	+1.01	+1.36
CCNA1	NM_003914	-1.70**	-1.75**	-1.72**	-1.09	-1.14	-1.10
CCNA2	NM_001237	-1.24	-1.57**	-1.39	-1.29	-1.08	-1.19
CCNE1	Al671049	-1.50**	-1.45	-1.48	+1.02	-1.04	-1.01
CCNE2	AF112857	-1.05	-2.07**	-1.28	-1.19	-1.04	-1.12
CCNF	NM_001761	-1.54**	+1.01	-1.42	+1.03	-1.02	+1.00
CCNF	U17105	-1.81**	-1.45	-1.74**	-1.18	-1.18	-1.18
CCNG2	L49506	+2.72	+2.08	+2.37*	-1.19	+1.14	+1.00
CCNG2	NM_004354	+2.49	+1.84	+1.93*	-1.06	+1.04	-1.02
CCNT1	NM_001240	-1.36	-1.50**	-1.43	-1.29	-1.28	-1.28
CCPG1	AK022459	+4.21	+2.96	+3.53**	-1.06	-1.13	-1.07

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
CCPG1	NM_004748	+2.89	+2.41	+2.87*	-1.03	+1.04	+1.01
CCRK	NM_012119	-2.20**	-1.78**	-2.19**	-1.18	-1.17	-1.17
CCT2	AL545982	-1.21	-1.99**	-1.26	-1.01	-1.05	-1.04
CCT6A	NM_001762	-1.31	-1.50**	-1.36	-1.04	+1.06	-1.01
CD3EAP	NM_012099	-1.59**	-1.43	-1.51**	-1.00	-1.11	-1.03
CD53	NM_000560	+1.69	+1.58	+1.61*	+1.13	-1.06	+1.03
CD55	BC001288	+1.83	+1.42	+1.72*	-1.01	-1.13	-1.06
CD55	NM_000574	+2.26	+1.92	+2.18*	-1.09	+1.02	-1.07
CDC2	D88357	-1.14	-1.79**	-1.24	+1.07	-1.02	-1.02
CDC2	NM_001786	-1.19	-1.73**	-1.25	+1.04	-1.04	-1.02
CDC20	NM_001255	-1.61**	-1.39	-1.52**	+1.04	-1.01	+1.02
CDC25A	Al343459	-1.67**	-1.63**	-1.65**	+1.05	+1.04	+1.05
CDC25B	NM_021873	-1.52**	+1.58	-1.26	-1.00	-1.03	-1.02
CDC45L	NM_003504	-1.54**	-1.35	-1.45	-1.13	-1.20	-1.16
CDC6	NM_001254	-1.33	-1.62**	-1.40	-1.04	-1.03	-1.03
CDCA3	BC002551	-1.51**	-1.42	-1.49	+1.11	+1.01	+1.08
CDCA3	NM_031299	-1.62**	-1.71**	-1.65**	+1.04	+1.01	+1.03
CDKN1B	BC001971	+1.58	+1.53	+1.56*	+1.28	+1.15	+1.17
CDKN3	AF213033	-1.79**	-1.85**	-1.80**	-1.08	-1.28	-1.12
CDKN3	AF213040	-1.52**	-1.57**	-1.54**	+1.02	+1.00	+1.01
CDR2	AL582414	-1.60**	-1.79**	-1.71**	-1.07	-1.14	-1.11
CENPF	NM_005196	-1.52**	-1.08	-1.45	-1.04	+1.06	-1.02
CENPN	AK023669	-1.13	-1.78**	-1.15	-1.10	-1.16	-1.12
CENPO	BE326728	-2.14**	-1.50**	-2.01**	+1.03	-1.11	-1.09
CENPT	NM_025082	-2.12**	-1.25	-1.70**	-1.28	-1.35	-1.31
CEP152	Al130715	-1.58**	-1.50**	-1.53**	-1.12	-1.18	-1.18
CEP76	NM_024899	-1.64**	-1.79**	-1.67**	-1.20	-1.21	-1.20
CEP78	AW268594	-1.61**	-1.72**	-1.71**	-1.39	-1.33	-1.34
CG018	N80918	+1.95	+1.52	+1.87*	-1.04	-1.15	-1.09
CHAF1A	NM_005483	-1.59**	+1.31	-1.29	+1.05	+1.14	+1.08
CHEK1	NM_001274	-1.26	-1.73**	-1.34	-1.26	-1.22	-1.23
CHEK1	NM_001274	-1.14	-1.52**	-1.17	-1.03	+1.02	-1.02
CHML	AU155565	-1.64**	-1.83**	-1.68**	-1.29	-1.15	-1.29
CHORDC1	NM_012124	-1.33	-1.53**	-1.34	+1.07	+1.20	+1.08
CIAPIN1	NM_020313	-1.44	-1.54**	-1.46	-1.09	-1.04	-1.08
CIRH1A	AL578336	-1.36	-1.56**	-1.45	-1.14	-1.11	-1.12
CIZ1	AA054734	-1.62*	+1.83	-1.22	+1.24	+1.21	+1.23
CIZ1	NM_012127	-1.74**	+1.46	-1.30	+1.20	+1.14	+1.17
CKAP4	NM_006825	-1.64**	-1.35	-1.63**	-1.19	-1.14	-1.17
CKAP5	Al1 $\overline{4} 3124$	-1.66**	-1.07	-1.59**	+1.03	-1.05	-1.05
CKAP5	BC035554	-1.79**	+1.08	-1.51**	+1.03	+1.04	+1.03
CLPTM1	BC004865	-1.97**	-1.52*	-1.67**	-1.21	+1.05	-1.13
CLSPN	NM_022111	-1.65**	-1.67**	-1.66**	-1.39	-1.11	-1.36
CNOT1	NM_016284	-1.20	+1.40	-1.00	+1.57	+1.08	+1.51**
CNOT3	NM_014516	-1.70**	+1.13	-1.30	+1.17	+1.07	+1.12
COQ3	AL136726	-1.70**	-1.46	-1.54**	-1.13	-1.18	-1.16
COQ3	NM_017421	-1.40	-1.53**	-1.40	-1.16	-1.13	-1.15
CORO2A	AL515381	-1.59**	-1.00	-1.30	-1.13	+1.04	-1.03
COX4I1	AW337510	-1.22	-1.22	-1.22	-1.56**	-1.40	-1.45
CPNE3	NM_003909	-1.62**	-1.50	-1.56**	-1.21	-1.35	-1.25
CPSF1	U37012	-1.59**	+1.57	-1.56**	-1.03	+1.06	+1.02
CRELD2	NM_024324	-1.75**	-1.53**	-1.67**	+1.08	-1.05	+1.07
CRKRS	Al823766	-1.52**	-1.39	-1.45	-1.06	-1.11	-1.09
CRKRS	NM_016507	-1.64**	-1.40	-1.51**	-1.02	+1.07	-1.02
CROP	BE887449	-1.55**	-1.36	-1.48	-1.27	-1.32	-1.29
CRYZ	NM_001889	-1.36	-1.65**	-1.42	-1.17	-1.09	-1.10
CSE1L	NM_001316	-1.58**	-1.48	-1.53**	-1.10	-1.09	-1.10
CSNK2B	NM_021221	-1.67**	-1.41	-1.66**	-1.12	-1.22	-1.20
CTA-126B4.3	AL022316	-1.50**	-1.39	-1.45	-1.14	-1.20	-1.17
CTB-1048E9.5	Al220627	-1.43	-1.51**	-1.46	+1.04	-1.09	-1.02
CTBS	AW304174	+2.00	+1.63	+1.75**	-1.08	+1.05	-1.07
CTBS	NM_004388	+1.76	+1.48	+1.61*	-1.42	-1.14	-1.16
CTNND2	AA768906	-1.52**	+1.07	-1.32	+1.20	+1.30	+1.22
CTPS	NM_001905	-1.62**	-1.45	-1.56**	-1.06	-1.17	-1.15
CTSS	BC002642	+1.79	+1.72	+1.75**	+1.09	+1.14	+1.10
CWF19L1	NM_018294	-1.33	-1.71**	-1.49	-1.11	-1.18	-1.12
CXorf34	NM_024917	-1.61**	-1.14	-1.28	-1.37	-1.27	-1.36
CXXC6	AI968175	-1.54**	-1.34	-1.40	-1.19	-1.37	-1.29
CYB5A	M22865	-1.76**	-1.67**	-1.68**	-1.02	-1.15	-1.09
CYB5A	M22976	-1.61**	-1.34	-1.39	+1.05	+1.16	+1.10
CYB5A	NM_001914	-1.66**	-1.41	-1.59**	+1.00	-1.04	-1.01
CYB5B	AW235051	-1.05	-1.52**	-1.11	-1.02	+1.03	+1.00
CYP1B1	AU144855	-1.64**	-1.69**	-1.66**	-1.43	-1.33	-1.35
CYP1B1	NM_000104	-1.67**	-1.33	-1.48	-1.21	-1.06	-1.19

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
DARS2	Al765051	-1.26	-1.56**	-1.35	-1.17	-1.22	-1.19
DCTN1	NM_004082	-1.76**	+1.57	-1.29	+1.08	+1.17	+1.12
DCXR	NM_016286	-1.53**	-1.38	-1.45	-1.01	-1.00	-1.00
DDX11	NM_004399	-1.91**	-1.16	-1.85**	-1.27	-1.19	-1.21
DDX11	AI983033	-1.92**	+1.16	-1.52**	+1.03	+1.01	+1.02
DDX11	NM_030653	-2.06**	-1.13	-1.80**	-1.18	-1.07	-1.18
DDX18	BC003360	-1.55**	-1.70**	-1.57**	-1.17	-1.17	-1.17
DDX46	AI765169	-1.32	-1.50**	-1.44	-1.07	+1.04	-1.05
DDX46	NM_014829	-1.59**	-1.51**	-1.55**	-1.13	-1.17	-1.14
DEPDC1	AJ278112	+1.02	-1.53**	-1.19	-1.09	-1.02	-1.06
DGCR8	AA203219	-1.55**	-1.01	-1.37	+1.05	+1.06	+1.06
DGCR8	NM_022775	-1.88**	+1.04	-1.77**	+1.09	-1.04	-1.00
DGKG	BF448158	-1.55**	-1.43	-1.49	-1.01	-1.04	-1.02
DHCR24	NM_014762	-1.58**	+1.21	-1.41	+1.21	+1.06	+1.07
DHRS13	AI076793	-1.63*	-1.16	-1.28	-1.22	-1.08	-1.14
DHX15	AF279891	-1.43	-1.71**	-1.45	-1.07	-1.09	-1.08
DHX33	AI720923	-1.48	-1.57**	-1.51**	-1.03	-1.24	-1.09
DHX38	AF038391	-1.51**	+1.37	-1.49	-1.03	-1.05	-1.04
DHX57	AA100250	-1.58**	-1.10	-1.36	-1.12	-1.05	-1.08
dJ222E13.2	AL157851	-1.37	-1.53**	-1.44	-1.46	-1.20	-1.30
DKC1	AJ010395	-1.48	-1.51**	-1.50**	-1.34	-1.23	-1.25
DLEU1	NM_005887	-1.46	-1.54**	-1.50	+1.11	-1.15	+1.01
DLG1	NM_004087	-1.14	-1.57*	-1.14	-1.08	-1.12	-1.10
DLST	BF669264	-1.52**	-1.60	-1.56**	+1.32	+1.25	+1.28
DLST	U87954	-1.60**	-1.41	-1.47	+1.07	+1.02	+1.05
DNAJA1	AL534104	-1.38	-1.52**	-1.40	-1.02	+1.04	+1.03
DNAJA1	NM_001539	-1.37	-1.66**	-1.39	+1.13	+1.13	+1.13
DNAJB14	BF590675	+1.33	-1.51	+1.26	-1.51**	-1.02	-1.31
DNAJC11	AL109978	-1.58**	+1.09	-1.48	+1.07	+1.08	+1.08
DNAJC5	AL118506	-1.50**	+1.62	-1.26	+1.14	+1.05	+1.07
DNASE2	AB004574	+2.10	+1.84	+1.94*	-1.14	+1.06	+1.05
DND1	Al949010	+1.25	+1.27	+1.26	+1.71	+1.09	+1.56*
DNM2	NM_004945	-1.54**	+1.74	-1.30	+1.22	+1.04	+1.09
DR1	AL137673	-1.02	-1.54*	-1.12	-1.19	-1.06	-1.17
DSU	BG167210	-1.18	-1.51**	-1.36	-1.42	-1.42	-1.42
DTL	AK001261	-1.40	-1.84**	-1.41	-1.15	-1.05	-1.10
DYNLL2	AA401429	-1.52**	-1.35	-1.37	+1.00	-1.21	-1.13
DYRK2	Y09216	-1.62**	-1.42	-1.50	-1.26	-1.24	-1.24
DZIP1	AL568422	-1.62**	-1.53**	-1.57**	+1.03	+1.06	+1.04
EBF3	AL354950	-1.81**	-1.61**	-1.78**	-1.19	-1.13	-1.16
EBF3	BF592034	-1.54**	-1.59**	-1.57**	-1.09	+1.01	-1.02
EBP	AV702405	-1.53**	-1.52**	-1.53**	+1.02	-1.15	-1.07
ECHDC1	BC003549	-1.08	-1.63**	-1.12	-1.07	-1.10	-1.08
EDEM1	AW139300	+2.20	+1.68	+1.98**	+1.26	+1.28	+1.27
EDEM3	NM_017992	-1.04	-1.87*	-1.16	+1.07	+1.08	+1.08
EDG3	AA534817	-1.99**	-1.37	-1.90**	+1.05	-1.03	+1.01
EHD4	AF320070	-1.64**	-1.32	-1.45	-1.07	-1.05	-1.06
EHMT2	NM_006709	-1.67**	+1.23	-1.48	+1.06	+1.00	+1.02
EIF2B3	NM-020365	-1.41	-1.52**	-1.47	-1.05	-1.11	-1.07
EIF2S1	BC002513	-1.20	-1.61**	-1.24	-1.18	-1.00	-1.15
EIF3S9	AA628539	-1.58**	-1.47	-1.52**	-1.14	-1.13	-1.14
EIF3S9	NM_003751	-1.55**	-1.05	-1.52**	+1.00	-1.01	-1.00
EIF3S9	U78525	-1.52**	-1.30	-1.52**	+1.01	+1.00	+1.01
EIF4A2	Al332397	-1.02	-1.30	-1.16	-1.50**	-1.41	-1.45
EIF4E	AW268640	-1.05	-1.60**	-1.09	+1.02	-1.01	+1.01
EIF4G1	AF104913	-1.65**	+1.28	-1.59**	+1.01	+1.12	+1.03
EIF5	AK026933	-2.11**	-2.00**	-2.06**	-1.13	-1.04	-1.13
EIF5	AL080102	-2.40**	-2.47**	-2.47**	-1.06	-1.08	-1.07
EIF5	BG481972	-1.86**	-2.06**	-1.98**	+1.00	-1.05	-1.00
EIF5	NM_001969	-2.24**	-2.54**	-2.38**	-1.03	-1.03	-1.03
ELAVL2	AL161628	-1.64**	-1.47	-1.57**	-1.37	-1.42	-1.39
ELOVL3	AF292387	-1.41	-1.63**	-1.50**	-1.25	+1.00	-1.11
ENOSF1	NM_017512	+1.74	+1.37	+1.57**	-1.04	-1.04	-1.04
ENSA	AV726322	+2.19	+1.90	+2.04**	+1.13	+1.48	+1.28
ENTPD6	NM_001247	-1.51**	-1.02	-1.37	-1.07	-1.14	-1.11
EPRS	Al142677	+2.22	+1.10	+1.82	-1.54**	-1.19	-1.34
ERGIC1	AK000752	-1.63**	-1.36	-1.43	-1.03	-1.13	-1.11
ESCO2	AA740849	+1.16	-1.70*	-1.16	-1.20	-1.08	-1.14
ESPL1	NM_012291	-1.71**	+1.30	-1.40	+1.16	-1.01	+1.01
ETS2	NM_005239	-1.38	-1.54**	-1.42	-1.11	-1.29	-1.19
EVI2A	NM_014210	+2.58	+2.25	+2.27*	+1.04	-1.01	+1.03
EVI2B	BC005926	+1.72	+1.58	+1.61*	-1.03	+1.08	-1.01
EWSR1	AW089574	-1.50**	-1.38	-1.41	-1.49	-1.41	-1.42
EXOC6	AK002113	-1.27	-1.53**	-1.34	-1.23	-1.20	-1.22

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
FAM119A	Al332764	-1.61**	-1.39	-1.49	-1.09	+1.03	+1.02
FAM120A	NM_014612	-1.19	+1.06	-1.12	-1.51**	+1.12	-1.12
FAM125B	AA534894	-1.63**	+1.18	-1.39	+1.13	+1.04	+1.08
FAM29A	AK022964	-1.46	-1.86**	-1.47	-1.18	-1.20	-1.19
FAM38A	NM_014745	-1.70**	+1.66	-1.46	+1.01	-1.02	-1.01
FAM54A	AL138828	-1.39	-1.74**	-1.46	-1.28	-1.12	-1.23
FAM83D	BC001068	-1.51**	-1.55**	-1.54**	-1.09	-1.09	-1.09
FAM98A	AL049943	-1.52**	-1.88**	-1.75**	-1.25	-1.12	-1.16
FANCA	NM_000135	-1.57**	-1.08	-1.28	-1.12	-1.15	-1.14
FARP2	AA046941	-1.52**	-1.35	-1.44	-1.20	-1.13	-1.17
FARSLA	AD000092	-1.82**	-1.91**	-1.86**	-1.01	+1.04	+1.02
FARSLA	NM_004461	-1.75**	-1.84**	-1.78**	-1.17	-1.19	-1.17
FARSLB	AF161521	-1.58**	-1.50**	-1.54**	-1.04	-1.16	-1.08
FASN	AI954041	-1.55**	+1.97	-1.33	+1.82	+1.12	+1.51
FBXL20	AA649201	-1.08	+1.07	-1.05	-1.52**	-1.50**	-1.51**
FBXL6	NM_024555	-1.50**	-1.11	-1.35	-1.47	-1.15	-1.23
FBXO5	AK026197	-1.08	-1.51**	-1.12	-1.22	-1.06	-1.14
FBXO9	AF176704	-1.44	-1.55**	-1.45	-1.00	-1.11	-1.04
FGD1	BG054835	-1.23	-1.11	-1.15	-1.51**	-1.19	-1.26
FGFR1OP	BC037785	-1.42	-1.63**	-1.48	-1.12	-1.23	-1.15
FGFR1OP	NM_007045	-1.56**	-1.63**	-1.59**	-1.22	-1.17	-1.20
FHOD1	NM_013241	-1.63**	+1.21	-1.33	-1.18	-1.05	-1.11
FIGNL1	NM_022116	-1.24	-1.85**	-1.32	-1.33	+1.00	-1.18
FKBP14	NM_017946	-1.24	-1.52**	-1.32	-1.21	-1.07	-1.15
FKBP1A	AI936769	+1.15	+1.08	+1.12	+1.74	+1.18	+1.72*
FKBP1A	NM_000801	+1.02	+1.13	+1.07	+1.69	+1.18	+1.60**
FKBP4	AA894574	-2.06**	-2.26**	-2.07**	+1.02	+1.06	+1.06
FKBP4	NM_002014	-1.93**	-1.49	-1.81**	+1.05	+1.02	+1.04
FLJ12529	NM_024811	-1.51**	+1.08	-1.50	+1.27	+1.08	+1.09
FLJ20105	NM_017669	-1.60**	-1.54**	-1.56**	-1.08	-1.09	-1.08
FLJ20186	NM_017702	-1.61**	-1.70**	-1.65**	+1.02	-1.04	-1.03
FLJ22028	NM_024854	+1.63	+1.51	+1.58**	-1.02	-1.02	-1.02
FLJ35848	BC041481	-1.56**	-1.54**	-1.55**	-1.19	-1.12	-1.16
FLJ38482	BE964222	-1.21	-1.52**	-1.30	-1.42	-1.07	-1.22
FLJ40432	AW135279	-1.19	-1.68**	-1.28	-1.04	+1.08	+1.01
FOLR1	AF000381	-1.08	+1.23	-1.01	-1.68**	-1.67**	-1.67**
FOXM1	NM_021953	-1.54**	+1.24	-1.54**	+1.29	+1.01	+1.15
FSCN1	NM_003088	-1.56**	-1.17	-1.55**	+1.12	-1.05	+1.03
FUBP1	AL036840	-1.61**	-1.50*	-1.55**	-1.04	+1.13	-1.02
FUCA1	NM_000147	+1.57	+1.47	+1.53**	-1.01	-1.27	-1.07
FUS	BE930017	+1.04	-1.78*	+1.02	-1.40	+1.03	-1.15
G3BP	NM_005754	-1.25	-1.64**	-1.26	-1.14	-1.18	-1.16
G3BP2	AU149503	-1.18	-1.61**	-1.24	-1.04	-1.02	-1.03
G3BP2	NM_012297	-1.12	-1.79**	-1.37	-1.13	-1.10	-1.11
GADD45GIP1	BF972185	-1.68**	-1.52**	-1.60**	-1.01	-1.08	-1.04
GAL	AL556409	-1.80**	-1.52**	-1.65**	+1.01	+1.03	+1.02
GANC	Al671238	-1.52**	-1.13	-1.48	+1.01	-1.24	-1.15
GAS5	AW105301	-1.64**	-1.83**	-1.75**	-1.25	-1.22	-1.23
GATAD2A	AL390164	-1.51**	-1.40	-1.46	-1.10	-1.15	-1.14
GCDH	NM_013976	-1.45	-1.57**	-1.48	-1.20	-1.14	-1.17
GCH1	NM_000161	-2.41**	-2.01**	-2.26**	-1.29	-1.18	-1.26
GCLM	NM_002061	-1.28	-1.74**	-1.30	-1.11	+1.11	-1.02
GCN1L1	D86973	-1.63**	-1.05	-1.47	+1.10	-1.07	+1.02
GDAP2	BC013132	-1.35	-1.56**	-1.39	-1.30	-1.22	-1.27
GDF1	NM_001492	-1.58**	-1.03	-1.56**	-1.59**	-1.18	-1.30
GEMIN5	AW024563	-2.23**	-1.79**	-2.08**	-1.01	-1.09	-1.04
GEMIN6	NM_024775	-1.33	-1.51**	-1.36	-1.01	-1.11	-1.07
GGA1	BC029388	-1.29	-1.51**	-1.37	-1.20	-1.23	-1.22
GINS1	NM_021067	-1.55**	-1.46	-1.51**	-1.12	-1.13	-1.12
GMFB	BC005359	+1.03	-1.53*	-1.16	+1.03	-1.12	-1.01
GMNN	NM_015895	-1.55**	-1.69**	-1.56**	+1.02	-1.02	-1.02
GMPPB	NM_021971	-1.58**	-1.49	-1.54**	-1.27	-1.19	-1.21
GNPNAT1	BE789346	-1.51**	-1.18	-1.30	-1.14	-1.12	-1.13
GPATC4	Al911518	-1.51**	-1.49	-1.50	+1.06	-1.02	+1.04
GPATC4	BE794289	-1.63**	-1.57**	-1.60**	-1.06	-1.06	-1.06
GPD1L	AA135522	-1.63**	-1.30	-1.50**	-1.04	-1.17	-1.08
GPM6B	AF016004	-1.87**	-1.34	-1.50**	-1.08	-1.10	-1.10
GPM6B	AI419030	-1.59**	-1.33	-1.45	-1.13	+1.02	-1.09
GPR125	M37712	-1.62**	-1.44	-1.45	-1.20	-1.17	-1.19
GTF3C2	AW194657	-1.63**	-1.25	-1.42	-1.13	-1.18	-1.15
GTF3C2	NM_001521	-1.58**	-1.35	-1.46	-1.13	-1.16	-1.14
GTF3C4	BF434224	-1.50**	-1.39	-1.44	-1.08	-1.02	-1.05
GTPBP4	NM_012341	-1.38	-1.53**	-1.42	-1.16	-1.11	-1.14
H2BFS	NM_017445	+1.62	+1.37	+1.57**	-1.11	-1.06	-1.10

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
HBEGF	NM_001945	+1.76	+1.50	+1.65*	+1.08	-1.02	+1.02
HBS1L	BC001465	-1.13	-1.52**	-1.20	-1.10	-1.13	-1.12
hCAP-D3	Al796581	-1.69**	-1.00	-1.50**	+1.10	+1.13	+1.12
HDLBP	BE378479	-1.63**	+1.26	-1.40	+1.17	+1.15	+1.16
HDLBP	NM_005336	-1.51**	+1.52	-1.45	-1.02	+1.06	+1.00
HEATR1	NM_018072	-1.93**	-1.47	-1.70**	-1.05	-1.10	-1.07
HEATR2	BF111719	-1.73**	-1.52**	-1.57**	-1.15	-1.20	-1.18
HEATR2	NM_017802	-1.66**	-1.46	-1.58**	+1.04	-1.08	-1.02
HELLS	Al650364	-1.82**	-1.46	-1.60**	-1.08	-1.07	-1.07
HGS	AF260566	-1.61**	+1.20	-1.32	-1.06	+1.02	-1.02
HLA-E	NM_005516	+1.75	+1.52	+1.66*	+1.02	+1.04	+1.03
HN1	NM_016185	-1.48	-1.53**	-1.49	-1.04	-1.03	-1.04
HNRPA1	Al144007	-1.73**	-1.68**	-1.71**	-1.54*	-1.43	-1.49
HNRPA2B1	Al963008	-1.40	-1.38	-1.39	-1.65**	-1.40	-1.45
HNRPL	AL044078	-1.58**	-1.26	-1.43	-1.46	-1.27	-1.29
HSPA14	AV757332	-1.48	-1.53**	-1.51**	-1.02	-1.10	-1.05
HSPA14	NM_016299	-1.41	-1.62**	-1.50	-1.09	-1.10	-1.10
HSPA1A	NM_005345	-1.34	-1.56**	-1.41	-1.01	+1.29	+1.13
HSPA1B	NM_005346	-1.55**	-1.52**	-1.54**	+1.07	+1.31	+1.29
HSPA4	BC002526	+1.01	-1.61*	-1.25	-1.07	-1.03	-1.05
HSPA4L	NM_014278	-1.78**	-2.10**	-1.90**	-1.19	+1.04	-1.11
HSPA8	AB034951	-1.43	-1.67**	-1.47	+1.09	+1.08	+1.08
HSPA8	AF217511	-1.51**	-1.47	-1.49	+1.02	+1.03	+1.02
HSPA8	AF352832	-1.45	-1.51**	-1.48	+1.04	+1.05	+1.05
HSPC049	AW300278	-1.61**	+1.14	-1.59**	-1.15	-1.19	-1.16
HSPC111	BE314601	-1.53**	-1.61**	-1.57**	+1.02	-1.05	+1.01
HSPE1	NM_002157	-1.31	-1.51**	-1.50**	-1.04	+1.02	-1.02
HSPH1	BG403660	-1.68**	-2.50**	-2.06**	-1.04	+1.06	-1.00
HSPH1	NM_006644	-1.57**	-1.46	-1.51**	+1.06	+1.16	+1.09
HYOU1	NM_006389	-1.63**	+1.03	-1.57**	+1.24	+1.14	+1.23
HYPK	AW953521	-1.72**	-1.81**	-1.74**	-1.08	-1.22	-1.11
HYPK	NM_016400	-1.75**	-1.70**	-1.71**	-1.08	-1.24	-1.14
IDE	AA918442	-1.85**	-2.06**	-1.85**	-1.05	-1.25	-1.14
IDE	NM_004969	-1.58**	-1.68**	-1.67**	-1.04	-1.08	-1.06
IFI16	AF208043	+2.33	+2.04	+2.23**	-1.13	-1.17	-1.15
IFRD1	AA747426	+1.78	+1.40	+1.64**	-1.11	+1.10	-1.10
IHPK1	BE614199	-1.73**	-1.05	-1.44	+1.07	-1.18	-1.01
IL10RB	BC001903	+1.55	+1.40	+1.53*	+1.15	+1.11	+1.13
ILF3	BC003086	-1.53**	+1.35	-1.42	+1.00	+1.08	+1.03
INTS1	BF055496	-1.56**	+1.40	-1.47	+1.02	-1.12	-1.01
INTS3	NM_023015	-1.53**	+1.05	-1.52**	+1.11	-1.03	+1.03
IPO11	AK001696	-1.61**	-1.53**	-1.57**	-1.02	-1.20	-1.15
IPO4	NM_024658	-1.88**	+1.11	-1.64**	+1.13	+1.10	+1.11
IRF3	NM_-001571	-1.66**	-1.12	-1.41	+1.05	+1.06	+1.06
ISG20L2	AW294587	-1.60**	-1.46	-1.50	+1.12	-1.14	+1.09
ISOC2	NM_024710	-1.86**	-1.87**	-1.87**	-1.37	-1.06	-1.27
ITGB1BP1	AL548363	-1.63**	-1.48	-1.55**	-1.08	-1.12	-1.11
JAG2	AF029778	-1.59**	+1.20	-1.11	-1.34	-1.02	-1.11
JMJD4	AA582199	-1.14	-1.55*	-1.25	-1.12	+1.02	-1.02
KATNAL1	Al807482	-1.77**	-1.36	-1.73**	-1.07	-1.23	-1.11
KCNE3	AF302494	+1.69	+1.39	+1.58**	+1.39	+1.34	+1.36
KCNK5	NM_003740	-1.63**	-1.14	-1.53**	-1.08	-1.05	-1.07
KCTD18	Al627249	+1.61	+1.48	+1.55**	+1.07	+1.12	+1.09
KDELR1	NM_006801	-1.26	-1.04	-1.14	+1.78	+1.15	+1.53**
KIAA0020	NM_014878	-1.32	-1.61**	-1.42	-1.07	-1.12	-1.11
KIAA0090	Al1 $\overline{4} 3233$	-1.61**	-1.28	-1.55**	-1.20	-1.15	-1.15
KIAA0100	NM_014680	-1.66**	+1.02	-1.48	+1.24	+1.05	+1.11
KIAA0133	NM_014777	-1.96**	-1.73**	-1.86**	+1.06	-1.09	+1.01
KIAA0179	AA811192	-1.68**	-1.68**	-1.68**	-1.02	-1.04	-1.03
KIAA0194	D83778	-1.51**	+1.00	-1.43	-1.00	-1.14	-1.07
KIAA0265	D87454	-1.54**	+1.03	-1.43	+1.16	+1.02	+1.05
KIAA0317	NM_014821	-1.66**	+1.20	-1.53**	+1.11	+1.01	+1.02
KIAA0664	AB014564	-1.92**	-1.27	-1.92**	-1.10	-1.18	-1.14
KIAA0683	AB014583	-1.51**	+1.01	-1.48	+1.01	-1.02	-1.00
KIAA0947	BC004902	-1.58**	-1.30	-1.51**	-1.03	+1.01	-1.01
KIAA1333	AA887053	-1.43	-1.50**	-1.46	-1.36	-1.14	-1.32
KIAA1333	AW007694	-1.54**	-1.51**	-1.52**	-1.20	-1.20	-1.20
KIAA1333	BC000973	-1.27	-1.64**	-1.48	-1.10	-1.13	-1.12
KIAA1545	AL583509	-1.80**	-1.30	-1.70**	-1.19	-1.10	-1.14
KIAA1797	NM_017794	-1.67**	-1.35	-1.54**	-1.09	-1.09	-1.09
KIAA1958	Al640482	-1.47	-1.53**	-1.50**	-1.33	-1.10	-1.25
KIF14	AW183154	-2.23*	-1.28	-1.60**	-1.14	+1.18	+1.06
KIF17	AA909345	-1.50**	-1.01	-1.24	-1.03	-1.00	-1.02
KITLG	Al446414	-1.79**	-1.86**	-1.83**	-1.15	-1.00	-1.14

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
KLF10	NM_005655	+1.73	+1.50	+1.58**	-1.16	+1.05	-1.08
KLF13	NM_015995	+1.27	+1.09	+1.26	-1.64**	+1.02	-1.23
KLHDC5	AW293538	-1.53**	-1.37	-1.45	-1.14	-1.15	-1.14
KLHL18	AB018338	-1.56**	-1.18	-1.52**	+1.08	-1.07	+1.02
KLHL21	NM_014851	-1.77**	+1.01	-1.60**	+1.05	-1.04	+1.03
KLHL7	NM_018846	-1.90**	-1.66**	-1.77**	-1.17	-1.26	-1.21
KMO	AI074145	-1.47	-1.32	-1.39	-1.42	-1.52**	-1.47
KNS2	AA706790	-1.69**	-1.11	-1.51**	-1.08	-1.09	-1.08
KPNA1	AW051311	-1.69**	-1.31	-1.59**	-1.16	-1.37	-1.28
KPNA3	AF034756	-1.52**	-1.63**	-1.59**	-1.66**	-1.26	-1.59**
KRAS	BF673699	+1.19	-1.11	+1.04	-1.50**	+1.08	-1.15
KRCC1	AK025986	+1.64	+1.53	+1.62*	-1.03	+1.14	+1.01
KRT19	NM_002276	+1.68	+1.86	+1.84	-1.83**	-1.37	-1.42
LAIR1	NM_021708	+1.64	+1.46	+1.56*	-1.01	+1.01	+1.00
LARP1	BC001460	-1.53**	+1.27	-1.23	+1.42	+1.06	+1.32
LARP1	BE881529	-1.53**	+1.27	-1.30	+1.36	+1.07	+1.32
LARS2	NM_015340	-1.51**	-1.19	-1.42	+1.10	-1.14	+1.01
LAS1L	NM_031206	-1.95**	-1.71**	-1.91**	-1.10	-1.11	-1.10
LIG3	NM_013975	-1.51**	-1.17	-1.45	-1.08	-1.20	-1.12
LIG4	NM_002312	-1.17	-1.66**	-1.19	-1.04	+1.04	-1.03
LIMA1	BC001247	-1.16	-1.25	-1.17	-1.55**	+1.03	-1.35
LIMS1	NM_004987	+1.75	+1.43	+1.55**	-1.23	+1.19	+1.08
LIN28B	AL039884	-1.74**	-1.59**	-1.71**	+1.02	-1.02	-1.00
LIN7C	NM_018362	-1.01	-1.64*	-1.10	-1.19	-1.03	-1.18
LMAN1	U09716	+1.04	-1.59**	-1.26	-1.26	-1.30	-1.28
LMNB2	M94363	-1.79**	+1.38	-1.42	+1.11	+1.05	+1.08
LOC145758	AW003222	-1.63**	-1.21	-1.25	-1.13	-1.17	-1.14
LOC202347	Al768720	+1.33	+1.41	+1.37	+1.69	+1.20	+1.59*
LOC221143	Al141584	-1.55**	-1.47	-1.51**	-1.06	-1.10	-1.07
LOC284702	Al440495	-1.52**	-1.45	-1.49	-1.81**	-1.39	-1.60**
LOC285148	AA502936	+1.75	+1.32	+1.58**	+1.21	+1.12	+1.15
LOC400027	AA044705	+1.58	+1.45	+1.52**	-1.04	+1.19	+1.01
LOC401152	AV727336	+1.81	+1.63	+1.70*	-1.04	-1.03	-1.03
LOC440731	AI286239	-1.61**	-1.49	-1.55**	-1.24	-1.31	-1.27
LOC440944	CA430188	-1.60**	-1.23	-1.38	-1.88**	-1.59**	-1.70**
LOC493869	AL571557	+2.00	+1.81	+1.92*	-1.04	-1.04	-1.04
LOC56902	NM_020143	-1.33	-1.52**	-1.41	-1.02	-1.05	-1.03
LOC642031	BF732919	-1.80**	+1.20	-1.72**	+1.20	+1.14	+1.17
LOC642981	BF691634	-1.68**	-1.15	-1.42	+1.10	+1.08	+1.09
LOC644655	AW340595	-1.15	-1.17	-1.16	-1.51**	-1.31	-1.41
LOC645961	AL080179	-2.03**	-1.70**	-1.88**	-1.00	+1.06	+1.03
LOC646848	AA524669	+1.21	+1.13	+1.17	-1.61**	-1.81**	-1.62**
LOC652500	AL573951	-1.46	-1.56**	-1.54**	-1.06	-1.12	-1.08
LOC653890	BG390493	-1.31	-1.52**	-1.32	-1.18	-1.15	-1.16
LOC90379	AA733079	-1.59*	+1.20	-1.24	-1.13	-1.03	-1.10
LOC90379	Al363375	-1.69**	+1.16	-1.30	-1.06	+1.02	-1.03
LOC92482	AV728606	+1.74	+1.18	+1.59*	+1.12	-1.04	+1.07
LPL	BF672975	-1.79**	-2.04**	-1.91**	-1.45	-1.32	-1.40
LPL	NM_000237	-2.01**	-2.09**	-2.03**	-1.22	-1.28	-1.25
LRP5	AB017498	-1.55**	-1.01	-1.53**	-1.19	-1.12	-1.14
LRRC58	BG285274	-1.04	-1.52**	-1.19	-1.03	-1.10	-1.06
LRRC8B	AU146004	-1.55**	-1.48	-1.52**	-1.23	-1.25	-1.24
LTV1	Al458051	-1.43	-1.61**	-1.47	-1.16	+1.00	-1.12
LYAR	AL136750	-1.48	-1.58**	-1.53**	-1.13	-1.15	-1.14
LYAR	AW958593	-1.48	-1.67**	-1.53**	-1.21	-1.07	-1.14
LYST	U84744	+1.05	+1.00	+1.03	-1.63**	-1.07	-1.32
MAFK	BG231691	-1.56**	+1.09	-1.48	-1.07	-1.09	-1.08
MAGEA3	BC000340	-1.53**	-1.36	-1.44	-1.14	-1.09	-1.10
MALAT1	AI446756	-1.20	-1.13	-1.16	-1.51**	-1.28	-1.41
MALAT1	BE708432	-1.46	-1.24	-1.34	-2.07**	-1.43	-1.73**
MALAT1	BG534952	+1.35	+1.18	+1.33	-2.23**	+1.12	-1.62**
MAP3K7	AF218074	-1.16	-1.52*	-1.20	-1.11	-1.06	-1.10
MAP3K7IP3	BF593914	-1.62**	-1.22	-1.44	-1.26	-1.10	-1.17
MAP4K1	AA744529	-1.65**	-1.16	-1.31	-1.26	-1.09	-1.11
MAP4K1	NM_007181	-1.60**	-1.04	-1.48	-1.35	-1.20	-1.26
MARS2	BE542381	-1.58**	-1.40	-1.51**	-1.28	-1.13	-1.18
MATK	NM_002378	-1.67**	-1.34	-1.39	-1.33	-1.27	-1.30
MATR3	BI832461	+1.06	-1.77*	-1.13	-1.20	-1.00	-1.18
MCAM	BC006329	-1.62**	-1.57**	-1.59**	-1.09	-1.11	-1.10
MCM10	NM_018518	-1.60**	-1.46	-1.58**	+1.03	-1.04	-1.01
MCM3AP	AJ010089	-1.79**	+1.24	-1.62**	+1.11	-1.01	+1.04
MCM4	AA604621	-1.85**	-1.79**	-1.82**	-1.19	-1.09	-1.13
MCM4	AI859865	-1.59**	-1.05	-1.55**	+1.12	+1.13	+1.12
MCM4	AI936566	-1.02	-1.60*	-1.28	-1.23	-1.18	-1.18

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
MDC1	Al673553	-1.91**	-1.25	-1.72**	-1.16	-1.23	-1.19
MDC1	NM_014641	-2.07**	-1.47	-1.75**	+1.01	-1.02	+1.00
MDN1	BE670928	-1.56*	-1.03	-1.19	+1.20	+1.20	+1.20
METTL8	BC025250	-1.26	-1.63**	-1.29	-1.15	-1.08	-1.11
MFNG	Al738965	-1.04	-1.14	-1.12	-1.52**	-1.04	-1.21
MGC10433	NM_024321	-1.55*	+1.07	-1.22	+1.02	+1.12	+1.06
MGC10850	BC004284	-1.55**	-1.56**	-1.56**	+1.09	+1.07	+1.08
MGC13114	BC007207	-1.67**	-1.70**	-1.68**	+1.04	-1.13	-1.01
MGC2408	BE646208	-1.62**	-1.62**	-1.62**	-1.03	-1.06	-1.04
MGC3207	AK026666	-1.65**	-1.48	-1.53**	-1.14	-1.15	-1.15
MGC52110	AA115117	+1.60	+1.56	+1.57*	+1.13	-1.03	+1.00
MIRN21	BF674052	+1.01	-1.04	+1.01	-1.51**	-1.53*	-1.52**
MKI67	AU152107	-1.65*	+1.17	-1.24	+1.17	+1.27	+1.19
MLL2	Al394529	+1.10	+1.34	+1.18	+1.76	+1.23	+1.51**
MLSTD1	NM_018099	-1.22	-1.51**	-1.39	-1.29	-1.31	-1.30
MOSPD3	NM_023948	-1.52*	-1.12	-1.18	+1.06	+1.16	+1.08
MPHOSPH6	NM_005792	-1.52**	-1.50	-1.51**	+1.02	-1.14	-1.06
MRAS	BF343625	-1.51**	+1.02	-1.25	+1.10	-1.03	+1.04
MRPL35	NM_016622	-1.41	-1.59**	-1.54**	+1.06	-1.10	-1.05
MRPL4	BC000756	-1.58**	-1.47	-1.54**	-1.14	-1.28	-1.18
MRPL42	BE782148	-1.08	-1.69**	-1.25	+1.06	-1.05	-1.03
MRPS12	AA513737	-1.93**	-1.98**	-1.96**	+1.17	-1.07	-1.02
MRPS12	AA587905	-1.47	-1.58**	-1.49	-1.11	-1.06	-1.09
MRPS12	NM_021107	-1.50	-1.54**	-1.52**	-1.05	-1.09	-1.07
MRPS17	NM_015969	-1.65**	-1.60**	-1.63**	-1.09	-1.11	-1.10
MRPS7	NM_015971	-1.31	-1.50**	-1.33	+1.03	-1.03	+1.00
MS4A7	AB026043	+1.66	+1.44	+1.55**	-1.16	+1.01	-1.02
MS4A7	AF237916	+1.67	+1.29	+1.62**	-1.15	+1.01	-1.02
MSH2	U04045	-1.32	-1.60**	-1.41	-1.20	-1.03	-1.18
MSH6	D89646	-1.58**	-1.51**	-1.54**	-1.19	-1.00	-1.15
MSTO1	BC002535	-1.35	-1.50**	-1.42	-1.06	-1.03	-1.05
MTERFD2	AL566167	-1.64**	-1.46	-1.54**	-1.02	-1.02	-1.02
MTMR4	AB014547	-1.78**	-1.33	-1.53**	+1.14	+1.01	+1.09
MTMR4	AL042220	-1.52**	-1.28	-1.37	+1.22	-1.00	+1.02
MUM1	AL360266	-1.54**	-1.06	-1.49	+1.01	+1.06	+1.03
MYO1G	BE646398	-1.00	+1.22	-1.00	-1.52**	-1.32	-1.41
NACA	Al992187	-1.57**	-1.36	-1.42	-1.68**	-1.36	-1.49
NADK	BE674658	-1.04	-1.08	-1.06	-1.66**	-1.41	-1.43
NARG1	AL556909	-1.90**	-1.88**	-1.89**	-1.32	-1.27	-1.29
NAT13	AU149868	-1.10	-1.72**	-1.27	-1.14	-1.05	-1.13
NCBP1	BC001450	-1.51**	-1.36	-1.43	-1.25	-1.18	-1.22
NCLN	AA781143	-1.72**	-1.06	-1.62**	+1.08	+1.03	+1.04
NCOA3	U80737	-1.08	-1.12	-1.10	-1.62*	-1.26	-1.28
NDUFB10	AF044954	-1.47	-1.51**	-1.49	+1.01	-1.09	+1.00
NEDD1	NM_152905	-1.18	-1.72**	-1.31	-1.18	+1.06	-1.12
NEFH	NM_021076	-1.76**	-1.63**	-1.70**	-1.14	-1.13	-1.13
NEFH	X15306	-1.83**	-2.01**	-1.91**	-1.00	-1.11	-1.05
NELL2	NM_006159	+1.61	+1.50	+1.56*	-1.19	-1.11	-1.15
NFATC2IP	AA 152202	-1.58**	-1.58**	-1.58**	-1.18	-1.17	-1.17
NFRKB	Al887378	-1.66**	-1.12	-1.47	-1.00	-1.10	-1.05
NHN1	AK026317	-1.52**	+1.04	-1.48	+1.14	-1.01	-1.01
NIP7	AF161528	-1.36	-1.58**	-1.45	-1.06	+1.04	+1.04
NKTR	Al688640	-1.33	-1.52**	-1.34	-1.19	+1.08	-1.07
NKTR	NM_005385	-1.58**	-1.18	-1.32	-1.03	-1.06	-1.04
NLN	AB033052	-1.34	-1.54**	-1.39	-1.04	-1.01	-1.02
NLN	AW006938	-1.68**	-1.25	-1.62**	-1.02	-1.20	-1.10
NLN	BF222737	-1.38	-1.57**	-1.49	-1.10	-1.06	-1.08
NOC2L	BC009786	-1.57**	-1.27	-1.54**	-1.48	-1.25	-1.35
NOL1	NM_006170	-1.50**	-1.43	-1.50**	-1.00	+1.02	+1.01
NOL6	NM_022917	-1.81**	-1.04	-1.78**	+1.09	-1.03	+1.07
NOLA1	NM_018983	-1.48	-1.57**	-1.51**	+1.02	-1.05	-1.03
NOLC1	NM_004741	-1.60**	-1.58**	-1.59**	-1.35	-1.03	-1.14
NOTCH2	AF308601	-1.75**	-1.29	-1.45	-1.09	-1.04	-1.07
NPLOC4	NM_017921	-1.59**	+1.15	-1.41	+1.09	+1.02	+1.05
NSDHL	BC000245	-1.67**	-1.48	-1.49	-1.06	+1.02	-1.06
NT5DC2	NM_022908	-1.80**	-1.49	-1.63**	-1.14	-1.07	-1.08
NUB1	BC034716	-1.52**	-1.39	-1.42	-1.04	-1.10	-1.05
NUCKS1	AW515443	+1.25	-1.04	+1.14	+3.35	+1.05	+2.94*
NUP153	NM_005124	-1.53**	-1.52**	-1.52**	-1.06	-1.07	-1.07
NUP155	NM_-004298	-1.74**	-1.54**	-1.64**	-1.11	-1.07	-1.09
NUP205	AW008531	-1.56**	-1.20	-1.49	+1.07	+1.05	+1.06
NUP210	NM_024923	-1.55*	-1.22	-1.36	-1.22	-1.17	-1.19
NUP62	NM_012346	-1.91**	-2.14**	-2.02**	-1.15	+1.11	-1.08
NUP62	NM_016553	-1.91**	-1.64**	-1.81**	+1.08	-1.07	+1.01

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
NUP93	NM_014669	-1.73**	-1.49	-1.68**	-1.12	-1.10	-1.11
NUP98	NM_005387	-1.64**	-1.15	-1.47	+1.19	-1.06	+1.05
NUTF2	AW071847	-1.51**	-1.30	-1.31	-1.02	-1.08	-1.08
OBFC2B	NM_024068	-1.50*	-1.14	-1.26	+1.60	+1.21	+1.41
OGDH	NM_002541	-1.71**	+1.67	-1.53**	+1.26	+1.20	+1.23
OPN1SW	AA868461	-2.07**	-1.61**	-1.74**	-1.11	-1.22	-1.17
OTUD3	AL537463	-1.70**	-1.08	-1.67**	-1.38	-1.48	-1.40
OXSR1	NM_005109	-1.69**	-1.18	-1.48	-1.00	+1.00	+1.00
P2RY2	NM_002564	-1.55**	-1.58**	-1.57**	-1.13	-1.02	-1.07
PABPN1	Al130920	-1.18	-1.08	-1.13	-1.53**	-1.18	-1.38
PAFAH1B1	L13386	-1.58**	+1.01	-1.45	+1.10	-1.06	-1.04
PAICS	NM_006452	-1.29	-1.79**	-1.35	-1.02	-1.04	-1.03
PAK1	BE875592	-1.20	-1.19	-1.19	-1.53**	-1.42	-1.46
PAPOLA	Al670847	-1.11	-1.86**	-1.16	-1.02	+1.13	-1.01
PAQR9	BG702061	-1.75**	-1.56**	-1.69**	-1.29	-1.13	-1.20
PARP1	M32721	-1.55**	-1.16	-1.52**	+1.13	+1.04	+1.09
PARP12	NM_022750	-1.11	+1.00	-1.09	-1.67**	-1.42	-1.43
PASK	U79240	-1.64**	-1.01	-1.44	-1.01	-1.03	-1.02
PCNXL3	Al379451	-1.77	+1.04	-1.76**	-1.20	-1.08	-1.13
PDCD4	N92498	+1.62	+1.45	+1.57*	-1.12	-1.01	-1.08
PDCD4	NM_014456	+1.88	+1.35	+1.78**	+1.01	+1.20	+1.01
PDCD4	NM_014456	+1.97	+1.22	+1.89**	-1.11	+1.18	-1.06
PDCD6	BC020552	-1.55**	-1.45	-1.50**	-1.05	-1.21	-1.16
PDE4DIP	Al821791	-1.54**	-1.39	-1.41	-1.19	-1.12	-1.15
PDGFA	NM_002607	+2.12	+1.83	+1.96*	+1.32	-1.10	-1.07
PDIA3	AI825800	-1.42	-1.61**	-1.43	-1.03	-1.00	-1.02
PDIA4	BC000425	-1.64**	-1.34	-1.64**	+1.04	-1.08	-1.02
PEBP1	AF130103	-1.72*	-1.19	-1.41	+1.02	+1.16	+1.11
PEBP1	NM_002567	-2.01**	-1.30	-1.45	-1.07	+1.20	-1.01
PEO1	NM_021830	-1.57**	-1.15	-1.50**	-1.08	-1.19	-1.12
PEPP-2	AI954612	-1.86**	-1.56**	-1.69**	-1.05	-1.01	-1.03
PEX3	AB035307	-1.26	-1.61**	-1.44	-1.24	-1.21	-1.23
PFAAP5	AW084068	+1.08	+1.14	+1.09	-1.56**	-1.33	-1.43
PFAS	AL044326	-1.74**	-1.14	-1.61**	+1.11	-1.10	-1.03
PFKM	U24183	-1.65**	-1.34	-1.48	-1.20	-1.17	-1.18
PGAM5	CA307621	-1.59**	-1.83**	-1.70**	-1.26	-1.14	-1.22
PHACTR2	NM_014721	-1.15	-1.55**	-1.16	-1.21	-1.13	-1.13
PHF15	Al735639	-1.79**	+1.09	-1.78**	+1.11	-1.14	-1.02
PHF19	BE544837	-1.39	-1.57**	-1.44	-1.10	-1.15	-1.11
PHF19	BE544837	-1.78**	-1.67**	-1.72**	+1.04	-1.14	+1.02
PKP4	NM_003628	-1.58**	+1.12	-1.48	-1.04	+1.13	+1.01
PMCH	NM_002674	-1.53**	-1.44	-1.48	+1.14	-1.30	-1.23
PNN	AW152664	-1.32	-1.57**	-1.35	-1.16	-1.17	-1.17
PNPT1	Al967971	-1.51**	-1.71**	-1.58**	-1.17	-1.16	-1.16
POLA	NM_016937	-1.66**	-1.05	-1.37	+1.08	-1.03	-1.01
POLA2	NM_002689	-1.52**	-1.33	-1.43	-1.03	-1.06	-1.04
POLE	AL080203	-1.70**	+1.04	-1.54**	-1.14	-1.19	-1.16
POLE2	NM_002692	-1.79**	-2.07**	-1.88**	-1.20	-1.14	-1.17
POLH	AF158185	-1.26	-1.51**	-1.33	-1.32	-1.11	-1.32
POLR1A	W93584	-1.53**	+1.03	-1.29	-1.12	-1.09	-1.11
POLR2A	NM_000937	-1.65**	-1.00	-1.54**	+1.13	-1.17	-1.00
POLR2C	BC000409	-1.30	-1.50**	-1.39	-1.01	-1.15	-1.03
POLR3A	BG330541	-1.69**	-1.02	-1.44	-1.00	-1.17	-1.14
POLR3B	NM_018082	-1.51**	-1.26	-1.37	-1.19	-1.06	-1.15
POLR3H	AI587069	-1.42	-1.71**	-1.45	-1.08	+1.01	-1.02
POLR3K	NM_016310	-1.53**	-1.40	-1.46	+1.09	-1.05	+1.07
POM121	AK022555	-1.57**	+1.38	-1.37	+1.06	+1.13	+1.08
POP1	D31765	-1.85**	-1.47	-1.83**	-1.01	-1.06	-1.01
POP7	BC001430	-1.45	-1.61**	-1.53**	-1.13	-1.09	-1.11
PPAN	BC000535	-1.78**	-1.21	-1.55**	-1.14	+1.02	-1.13
PPAT	AI457120	-1.58**	-1.73**	-1.65**	-1.40	-1.28	-1.35
PPIH	NM_006347	-1.51**	-1.51**	-1.51**	+1.04	-1.10	-1.05
PPP1R14B	BE305165	-1.69**	-1.56**	-1.61**	-1.01	-1.12	-1.06
PPP2R1B	M65254	-1.63**	-1.55**	-1.59**	-1.18	-1.05	-1.11
PPP2R2A	NM_002717	-1.51**	-1.46	-1.46	-1.11	-1.11	-1.11
PPRC1	NM_015062	-1.82**	-1.05	-1.73**	-1.05	-1.02	-1.04
PRDM10	NM_020228	-1.56**	-1.55	-1.55**	-1.03	-1.13	-1.08
PRDX6	N55072	-1.63**	-1.66**	-1.64**	-1.61*	-1.45	-1.51**
PRKAB2	AL552001	-1.53**	-1.16	-1.41	-1.02	-1.13	-1.06
PRMT1	NM_001536	-1.55**	-1.50	-1.53**	-1.08	-1.02	-1.05
PRNP	NM_000311	+2.01	+1.51	+1.80**	+1.04	+1.02	+1.03
PRO0149	AA526970	+1.64	+1.48	+1.51**	-1.07	-1.02	-1.05
PRPF38A	AL521713	-1.34	-1.66**	-1.34	-1.09	-1.08	-1.08
PRPF8	NM_006445	-1.60**	+1.07	-1.42	+1.10	+1.08	+1.09

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
PRPS1	NM_002764	-1.06	-1.56**	-1.23	-1.05	+1.04	-1.03
PRUNE	AF123539	-1.52**	-1.32	-1.39	-1.06	-1.14	-1.08
PSAT1	NM_021154	+6.14	+4.83	+5.81**	-1.16	-1.21	-1.19
PSMD1	Al8 60431	-1.52**	-1.52**	-1.52**	-1.09	-1.07	-1.08
PSMD1	NM_002807	-1.55**	-1.23	-1.47	-1.03	-1.09	-1.04
PSMD11	AF001212	-1.58**	-1.71**	-1.59**	+1.03	-1.01	-1.00
PSMD11	BF432873	-1.65**	-1.44	-1.48	-1.47	-1.23	-1.23
PSMD12	Al446530	-1.34	-1.56**	-1.36	-1.09	-1.02	-1.05
PSMD7	AW361702	-1.61**	-1.62**	-1.61**	-1.11	-1.31	-1.20
PSME4	D38521	-1.65**	-1.55*	-1.59**	-1.12	-1.04	-1.08
PSPH	NM_003832	+1.68	+1.57	+1.60**	-1.02	+1.03	-1.02
PSPH	NM_004577	+3.55	+3.41	+3.51*	+1.00	+1.30	+1.15
PTAR1	BE892889	-1.16	-1.68**	-1.16	-1.31	-1.24	-1.27
PTBP1	BC004383	-1.52**	-1.03	-1.51**	-1.04	-1.19	-1.12
PTOV1	AL046054	-1.72**	-1.17	-1.55**	-1.06	-1.03	-1.04
PTPLAD1	Al984229	-1.69**	-1.83**	-1.76**	-1.16	-1.22	-1.17
PTPLAD1	AJ271091	-1.61**	-1.74**	-1.68**	-1.18	-1.08	-1.12
PTPRC	Al809341	+1.70	+1.18	+1.60**	-1.33	+1.24	-1.09
PTPRF	NM_002840	-1.63**	+1.18	-1.40	+1.10	+1.02	+1.06
PTTG1	NM_004219	-1.50**	-1.33	-1.37	+1.04	-1.08	+1.02
PUS7	NM_019042	-1.83**	-1.57**	-1.70**	-1.10	-1.17	-1.15
PUS7L	AW665832	-1.42	-1.74**	-1.53**	-1.34	-1.34	-1.34
PVRL2	BE867789	-1.05	-1.06	-1.05	+1.54	+1.16	+1.51**
PWP1	NM_007062	-1.54**	-1.59**	-1.56**	-1.02	-1.10	-1.08
PWP2H	U56085	-1.65**	-1.22	-1.61**	-1.10	-1.05	-1.08
QDPR	BC000576	-1.53**	-1.36	-1.43	-1.13	-1.23	-1.16
QPCT	NM_012413	+1.51	+1.27	+1.51*	-1.11	-1.01	-1.06
QSER1	BG026723	-1.45	-1.65**	-1.46	-1.19	-1.27	-1.23
RAB11FIP3	NM_014700	-1.67**	-1.06	-1.43	-1.02	+1.09	+1.03
RAB18	AF274957	+1.02	-1.53*	+1.01	-1.04	-1.01	-1.02
RAB23	NM_016277	-1.55*	-1.75**	-1.64**	-1.21	-1.20	-1.21
RAB6A	AL136727	+1.82	+1.59	+1.70*	-1.08	+1.04	-1.07
RABEP1	AF098638	-1.21	-1.51**	-1.23	-1.09	-1.10	-1.10
RAD1	AF074717	-1.37	-1.67**	-1.43	-1.02	-1.10	-1.10
RAD1	AF084513	-1.30	-1.59**	-1.36	-1.06	-1.02	-1.04
RAD9A	NM_004584	-1.77**	-1.30	-1.64**	-1.28	-1.06	-1.16
RANGAP1	BE379408	-1.83**	-1.01	-1.54**	-1.01	+1.04	+1.02
RANGAP1	NM_002883	-1.95**	-1.82	-1.88**	+1.09	+1.14	+1.12
RANGAP1	NM_002883	-2.27**	-1.35	-1.69**	+1.04	+1.05	+1.05
RASA2	W384444	-1.34	-1.27	-1.30	-1.62**	-1.40	-1.56**
RBBP4	Al972451	-1.59**	-1.33	-1.36	-1.47	-1.27	-1.44
RBBP6	NM_006910	-1.60**	-1.42	-1.58**	-1.40	+1.05	-1.34
RBM14	NM_006328	-1.58**	+1.04	-1.53**	+1.18	+1.06	+1.12
RBM15	AF364037	-1.34	-1.66**	-1.38	+1.02	-1.01	-1.01
RBM19	NM_016196	-1.68**	-1.14	-1.44	-1.15	-1.04	-1.09
RBM25	AV757384	-1.43	-1.62**	-1.44	-1.09	-1.08	-1.09
RCN1	NM_002901	+1.93	+1.71	+1.83**	-1.08	-1.09	-1.09
RECQL4	NM_004260	-1.59**	+1.26	-1.51**	-1.07	+1.01	-1.04
RFC3	NM_002915	-1.27	-1.72**	-1.40	-1.14	-1.06	-1.13
RFC5	NM_007370	-1.35	-2.26**	-1.40	+1.08	-1.20	-1.12
RFWD3	BC002574	-1.59**	-1.09	-1.49	+1.03	-1.08	-1.00
RHOQ	NM_012249	+1.66	+1.44	+1.60**	-1.05	+1.21	-1.01
RHOT2	AK024450	-1.50**	-1.14	-1.45	-1.11	-1.04	-1.07
RIF1	AU150841	-1.11	-1.35	-1.25	-1.55**	-1.08	-1.25
RIF1	BF666241	-1.04	-1.49	-1.29	-1.83*	-1.21	-1.47
RIOK3	NM_003831	+1.78	+1.69	+1.75*	+1.07	+1.15	+1.11
RNF40	NM_014771	-1.52**	+1.41	-1.45	+1.26	+1.19	+1.23
RNGTT	AB012142	-1.05	-1.65*	-1.12	-1.14	-1.04	-1.13
RNPC3	BF116157	+1.00	-1.10	-1.07	-1.59**	-1.12	-1.31
RNPS1	Al345238	+1.98	+1.65	+1.73**	+2.08	+1.47	+1.78*
RNU3IP2	NM_004704	-1.35	-1.51**	-1.41	-1.09	-1.14	-1.10
RP13- 15M17.2	BF315093	-1.92**	-1.30	-1.72**	-1.03	-1.07	-1.04
RP6-213H19.1	AF344882	-1.09	-1.55*	-1.18	-1.26	-1.17	-1.21
RPA1	BG398414	-1.52**	-1.31	-1.40	+1.01	-1.04	-1.02
RPL10	AW057781	-1.54**	-1.50*	-1.52**	-1.48	-1.37	-1.44
RPL17	AA522618	-1.61**	-1.51**	-1.56**	-1.65**	-1.46	-1.62**
RPL37A	AU155515	-1.78**	-1.92**	-1.79**	-1.63**	-1.45	-1.54**
RPL37A	BE857772	+2.75	+1.26	+1.94**	+1.72	+1.36	+1.52
RPL38	AW303136	+2.01	+1.55	+1.76	+2.21	+1.25	+1.66*
RPS11	BF680255	+1.69	+1.36	+1.64	+2.18	+1.38	+1.53*
RPS26	NM_001029	-1.62**	-1.38	-1.51**	-1.06	-1.07	-1.07
RPS6	AW205632	-1.59**	-1.81**	-1.73**	-1.24	-1.11	-1.22
RPS6KB1	M60725	-1.12	-1.55**	-1.16	-1.14	-1.07	-1.10

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
RRM1	Al692974	-1.14	-1.78*	-1.21	-1.05	-1.09	-1.07
RSRC1	BC010357	-1.21	-1.70**	-1.28	-1.04	-1.11	-1.07
RUSC1	NM_014328	-1.50**	-1.34	-1.46	+1.04	-1.01	+1.02
SAAL1	Al815207	-1.21	-1.51**	-1.23	+1.00	-1.13	-1.08
SACS	Al932370	-1.53**	-1.52**	-1.53**	-1.19	-1.03	-1.15
SAFB	Al769566	-1.44	-1.54**	-1.49	-1.23	-1.04	-1.18
SAFB	NM_002967	-1.69**	-1.59**	-1.61**	-1.15	-1.07	-1.10
SAFB2	D50928	-1.63**	-1.34	-1.55**	+1.03	-1.02	+1.01
SAFB2	NM_014649	-1.51**	-1.40	-1.45	-1.07	+1.03	-1.02
SAMD9L	BE966604	-1.14	+1.03	-1.11	-1.10	-1.50**	-1.23
SAPS2	NM_014678	-1.46	-1.07	-1.36	-1.61**	-1.34	-1.38
SAR1B	BC002847	-1.07	-1.54*	-1.11	-1.03	+1.03	+1.00
SAR1B	BE856242	-1.40	-1.60**	-1.42	-1.04	-1.29	-1.13
SCFD2	AW205790	-1.51**	-1.70**	-1.57**	-1.15	-1.25	-1.20
SCOC	AF330205	+1.13	-1.50*	-1.04	-1.12	+1.01	-1.06
SCPEP1	NM_021626	+1.74	+1.62	+1.67**	+1.03	-1.01	+1.01
SDF2L1	NM_022044	-2.05**	-2.10**	-2.07**	+1.20	+1.16	+1.18
SDHAL1	W90764	-1.27	-1.55**	-1.39	+1.00	-1.18	-1.12
SDHC	D49737	-1.23	-1.68**	-1.31	+1.03	-1.18	-1.07
SEC22C	BC006178	-1.19	-1.56**	-1.34	-1.21	-1.28	-1.24
SEC23B	NM_006363	-1.41	-1.52**	-1.43	-1.14	-1.14	-1.14
SEH1L	Al201534	-1.14	-1.71**	-1.34	+1.01	+1.08	+1.03
SEH1L	AV701173	-1.53**	-1.41	-1.47	-1.06	-1.07	-1.07
SELI	AB051511	-1.70**	-1.14	-1.66**	-1.07	+1.08	+1.01
SELI	BC021229	-1.74**	-1.77**	-1.76**	-1.39	-1.37	-1.38
SEPW1	AW514401	-1.83**	-1.85**	-1.84**	+1.04	-1.08	-1.02
SEPW1	NM_003009	-1.80**	-1.85**	-1.82**	+1.00	-1.15	-1.02
SEPX1	NM_016332	-1.51**	-1.36	-1.44	+1.01	-1.05	+1.01
SERPINB10	NM_005024	-1.41	-1.75**	-1.44	-1.26	-1.25	-1.25
SERPINI1	NM_005025	+1.66	+1.37	+1.58*	+1.08	+1.04	+1.07
SESN3	BF685808	-1.52**	-1.58**	-1.55**	-1.07	-1.02	-1.04
SF3A2	BF511170	-1.52*	-1.14	-1.15	-1.10	-1.11	-1.10
SF3A3	BE044440	-1.56**	+1.03	-1.52**	+1.03	-1.09	-1.08
SF3B3	NM_012426	-2.02**	-1.28	-1.78**	+1.07	-1.13	-1.01
SFN	X57348	+1.30	+1.47	+1.38	-1.30	-1.50**	-1.32
SFPQ	AV705803	-1.92**	-1.26	-1.73**	-1.40	-1.25	-1.37
SFRS12	Al810380	-1.44	-1.50**	-1.47	-1.11	+1.00	-1.08
SFRS7	AA524053	-1.64**	-1.70**	-1.66**	-1.61**	-1.49	-1.58**
SFRS7	BF033354	-1.33	-1.51**	-1.38	+1.05	-1.08	+1.00
SFXN3	AK091504	-1.51*	-1.32	-1.39	-1.46	-1.24	-1.28
SHQ1	Al188402	-1.40	-1.57**	-1.46	-1.05	-1.08	-1.06
SIN3A	Al433017	-1.68**	-1.09	-1.41	-1.21	-1.10	-1.16
SKP2	BC001441	-1.13	-1.55**	-1.43	-1.03	+1.12	-1.02
SKP2	BG105365	-1.65**	-1.71**	-1.68**	-1.09	-1.13	-1.10
SKP2	NM_005983	-1.07	-1.52**	-1.37	-1.10	+1.01	-1.08
SLC16A10	N30257	-2.05**	-1.91**	-1.93**	-1.48	-1.31	-1.38
SLC16A10	NM_018593	-1.54**	-1.64**	-1.57**	-1.48	-1.52**	-1.49
SLC16A3	AL513917	-1.46	-1.75**	-1.62**	-1.56*	-1.11	-1.29
SLC16A3	NM_004207	-1.73**	-1.26	-1.48	-1.09	-1.16	-1.16
SLC24A6	NM_024959	-1.58**	-1.17	-1.19	-1.17	-1.10	-1.13
SLC25A10	NM_-012140	-1.54**	-1.19	-1.35	-1.03	+1.05	+1.04
SLC25A32	NM_-030780	-1.43	-1.50**	-1.46	-1.14	-1.12	-1.13
SLC25A37	NM_018579	-1.04	-1.09	-1.07	-1.57**	-1.21	-1.35
SLC2A4RG	BE898559	-2.01**	-1.59	-2.00**	+1.44	+1.07	+1.37
SLC35B1	NM_005827	-1.49	-1.64**	-1.56**	-1.01	-1.02	-1.01
SLC35F1	AI809083	-1.72**	-1.42	-1.48	-1.03	-1.18	-1.10
SLC38A1	NM_030674	+2.20	+2.14	+2.17*	-1.20	-1.01	-1.14
SLC38A5	BG325630	-1.52**	-1.29	-1.42	-1.20	-1.06	-1.09
SLC39A10	AB033091	-1.60**	-1.51**	-1.59**	-1.07	-1.07	-1.07
SLC39A4	NM_017767	-1.53**	-1.44	-1.49	-1.25	-1.12	-1.23
SLC39A7	NM_006979	-1.27	-1.65**	-1.29	-1.11	-1.02	-1.07
SLC43A3	AI630178	-1.58**	-1.39	-1.52**	-1.16	-1.15	-1.15
SLC4A2	NM_003040	-1.56**	+1.58	-1.29	+1.06	+1.11	+1.08
SLC5A6	NM_021095	-2.23**	-1.80**	-2.03**	+1.09	-1.09	-1.08
SLC6A6	BG150485	-1.53**	-1.23	-1.41	+1.21	+1.04	+1.11
SLC9A6	NM_006359	-1.55**	-1.23	-1.37	-1.09	-1.13	-1.13
SLCO4A1	NM_016354	-2.06**	-1.55**	-2.01**	-1.05	-1.14	-1.06
SLFN11	AW0003459	-1.53**	-1.29	-1.52**	+1.14	+1.03	+1.05
SLITRK5	AW449813	-1.76**	-1.54**	-1.55**	-1.20	-1.03	-1.17
SMARCA4	AF254822	-1.66**	+1.57	-1.56**	-1.10	+1.05	-1.05
SMARCA4	Al684141	-1.64**	+1.37	-1.27	+1.02	+1.03	+1.02
SMARCA4	Al831675	-1.55**	-1.19	-1.45	-1.07	-1.05	-1.06
SMARCA4	AK026573	-1.64**	+1.36	-1.55**	-1.03	-1.00	-1.01
SMC2	NM_006444	-1.59**	-1.45	-1.53**	-1.04	-1.10	-1.07

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
SMC3	BF795297	+1.58	+1.41	+1.47	-1.62**	+1.14	-1.10
SMEK2	BC006215	-1.35	-1.64**	-1.37	-1.24	-1.17	-1.20
SMG1	BG180003	-1.41	-1.53**	-1.48	-1.36	-1.44	-1.41
SMG5	AB029012	-1.53**	+1.35	-1.39	-1.12	-1.02	-1.08
SMG7	NM_014837	-1.60**	+1.22	-1.41	+1.21	+1.02	+1.12
SMPD4	NM_017951	-1.60**	+1.18	-1.48	+1.08	+1.09	+1.09
SMTN	NM_006932	-1.73**	-1.00	-1.69**	-1.38	-1.41	-1.40
SMU1	NM_018225	-1.11	-1.71**	-1.26	-1.03	+1.04	+1.00
SNAPC4	NM_003086	-1.70**	-1.11	-1.47	-1.11	-1.14	-1.12
SNORD50A	T16443	-1.61**	-1.63**	-1.62**	-1.36	-1.37	-1.37
SORD	NM_003104	-1.52**	-1.40	-1.46	-1.09	-1.12	-1.11
SOX9	NM_-000346	+1.07	+1.68	+1.11	-1.51**	-1.51**	-1.51**
SPCS3	AL136660	-1.37	-1.52**	-1.43	-1.09	-1.12	-1.10
SPI1	NM_003120	-1.03	+1.09	+1.07	+2.07	+1.20	+1.75*
SPN	BC035510	+1.63	+1.32	+1.56*	-1.07	-1.14	-1.08
SPTAN1	U83867	-1.69**	+1.97	-1.32	-1.08	-1.03	-1.05
SR140	AB002330	-1.60**	-1.36	-1.53**	-1.23	-1.08	-1.20
SR140	Al184562	-1.51**	-1.51**	-1.51**	-1.21	-1.12	-1.19
SRFBP1	Al391443	-1.09	-1.56**	-1.19	-1.23	-1.14	-1.18
SRM	NM_003132	-1.79**	-1.45	-1.64**	-1.10	+1.01	-1.02
SRPK1	AW082913	-1.21	-1.65**	-1.44	-1.10	+1.03	-1.07
SSBP3	NM_018070	-1.71**	-1.18	-1.48	+1.19	+1.04	+1.17
SSR1	AI016620	-1.07	-1.61*	-1.10	-1.00	+1.01	+1.01
SSR1	AW006345	+1.02	-1.52*	-1.04	-1.05	+1.02	-1.04
SSX2IP	AW136988	-1.17	-1.54**	-1.43	+1.00	-1.15	-1.08
SSX2IP	R52678	-1.66**	-1.44	-1.57**	-1.32	-1.29	-1.31
STCH	NM_006948	+2.30	+1.11	+1.97*	+1.06	+1.13	+1.08
STEAP3	NM_018234	-1.62**	-1.29	-1.47	+1.28	-1.03	+1.22
STK36	AU149216	-1.35	+1.02	-1.34	-1.36	-1.57**	-1.46
STXBP1	NM_003165	+1.19	+1.62	+1.30	-1.12	-1.59**	-1.31
STXBP4	Al376134	-1.45	-1.53**	-1.48	-1.15	-1.25	-1.20
SUDS3	AK026749	-1.52**	+1.16	-1.22	-1.03	-1.13	-1.08
SUPT16H	NM_007192	-1.66**	-1.06	-1.44	+1.11	+1.03	+1.05
SUPT6H	D79984	-1.51**	+1.93	-1.47	+1.15	-1.00	+1.13
SUV39H1	NM_003173	-1.73**	-1.08	-1.52**	-1.14	+1.03	-1.14
SUV39H2	BC029360	-1.39	-1.69**	-1.41	-1.12	-1.18	-1.14
SYNJ2	AA191573	-1.54**	-1.16	-1.36	-1.07	-1.31	-1.28
TACSTD1	NM_002354	+2.11	+1.71	+1.76**	-1.26	-1.30	-1.28
TAF1C	NM_005679	-1.60**	+1.10	-1.56**	-1.19	-1.14	-1.16
TAF2	AF040701	-1.94**	-1.44	-1.50	-1.21	-1.26	-1.23
TAF4B	Al366784	-1.63**	-1.34	-1.58**	-1.20	-1.32	-1.27
TAF5	NM_139052	-1.59**	-1.56**	-1.58**	-1.12	-1.18	-1.13
TAF5L	BC041094	-1.55**	-1.36	-1.49	-1.04	-1.07	-1.06
TARBP1	NM_005646	-1.56**	-1.52**	-1.54**	-1.12	-1.21	-1.18
TARSL2	AA442856	-1.29	-1.58**	-1.48	-1.24	-1.35	-1.27
TATDN3	AL525367	+2.13	+1.46	+1.69*	-1.03	-1.12	-1.08
TATDN3	BE541548	+1.67	+1.40	+1.52*	-1.09	+1.05	-1.01
TBC1D13	NM_018201	-1.58**	+1.11	-1.46	+1.01	-1.18	-1.05
TBRG1	Al701055	-1.17	-1.22	-1.18	-1.73**	-1.46	-1.48
TCERG1	NM_006706	-1.59**	-1.40	-1.50**	-1.01	-1.04	-1.03
TCF25	BF000251	+1.04	+1.03	+1.03	-1.56**	-1.17	-1.37
TCF3	M31523	-1.53**	-1.29	-1.40	+1.11	-1.02	+1.07
TCOF1	AW167713	-1.67**	+1.09	-1.51**	+1.02	-1.00	+1.00
TEAD4	U63824	-1.69**	-1.20	-1.63**	-1.02	-1.02	-1.02
TEX15	AL133653	-1.42	-1.51**	-1.47	-1.22	-1.10	-1.21
TFDP1	AW007021	-1.73**	-1.38	-1.64**	-1.37	-1.14	-1.34
TFDP1	NM_007111	-1.39	-1.53**	-1.52**	-1.25	-1.10	-1.21
TFRC	BC001188	-1.62**	-1.70**	-1.66**	+1.06	+1.01	+1.05
TFRC	N76327	-1.33	-1.67**	-1.48	-1.22	-1.25	-1.23
TFRC	NM_003234	-2.08**	-2.03**	-2.04**	+1.13	-1.02	+1.02
TGDS	AA976208	-1.37	-1.58**	-1.38	-1.35	-1.15	-1.27
THRAP3	BE967048	-1.07	-1.09	-1.08	-1.56**	+1.02	-1.23
TIA1	BF692742	+1.07	-1.66*	+1.02	-1.04	-1.03	-1.04
TIAF1	NM_004740	-1.70**	+1.76	-1.49	+1.33	+1.03	+1.17
TIMELESS	NM_003920	-1.59**	-1.01	-1.24	+1.22	+1.08	+1.09
TIMM10	AF152354	-1.59**	-1.64**	-1.64**	-1.05	-1.24	-1.06
TIMM10	NM_012456	-1.69**	-1.65**	-1.66**	+1.09	-1.04	+1.05
TIMM17A	BC004439	-1.29	-1.50**	-1.30	+1.06	+1.10	+1.08
TIMM23	NM_006327	-1.23	-1.62**	-1.28	-1.00	-1.01	-1.01
TIPIN	NM_017858	-1.42	-1.91**	-1.44	-1.10	-1.11	-1.10
TJP2	NM_004817	-1.75**	-1.20	-1.67**	+1.01	-1.13	-1.00
TMCC1	BG499974	-1.62**	-1.49	-1.58**	-1.08	-1.29	-1.13
TMEFF2	AB004064	+1.57	+1.34	+1.35	+2.27	+1.36	+1.60**
TMEM106B	AV705186	+1.36	+1.24	+1.30	-1.69**	-1.09	-1.46

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
TMEM109	NM_024092	-1.53**	-1.40	-1.46	-1.12	-1.00	-1.11
TMEM154	AA806283	+2.05	+1.94	+1.95*	-1.06	+1.01	-1.01
TMEM77	Al474054	+1.55	+1.28	+1.54*	-1.10	-1.13	-1.11
TncRNA	Al042152	+1.11	-1.02	+1.05	-1.80*	-1.28	-1.48
TncRNA	AV699657	-1.76**	-1.50	-1.62**	-2.12**	-1.78*	-1.97**
TncRNA	BE675516	+1.12	-1.00	+1.06	-1.87**	-1.50	-1.66**
TNFRSF10A	W65310	-1.16	-1.17	-1.16	-1.54*	-1.21	-1.22
TNFRSF21	NM_016629	-1.90**	-1.78**	-1.88**	-1.27	-1.32	-1.30
TOP1	AW025108	+1.19	+1.02	+1.06	-1.86**	-1.02	-1.32
TP53BP1	BF060782	-1.65**	-1.44	-1.53**	-1.18	-1.16	-1.17
TPR	NM_003292	-1.51**	+1.13	-1.48	+1.00	+1.05	+1.03
TRAP1	NM_016292	-1.57**	-1.32	-1.54**	-1.12	-1.05	-1.05
TRIM37	AK022701	-1.61**	-1.43	-1.48	-1.16	-1.13	-1.13
TROAP	NM_005480	-1.85**	-1.27	-1.47	-1.10	-1.06	-1.08
TRSPAP1	AW961472	-1.46	-1.57**	-1.50	-1.31	-1.38	-1.33
TSC2	AC005600	-1.55**	+1.64	-1.42	-1.08	-1.08	-1.08
TSC22D3	NM_004089	+1.78	+1.57	+1.67*	+1.01	+1.06	+1.06
TSLP	AW118681	+1.59	+1.42	+1.51**	+1.11	+1.13	+1.13
TSPAN4	BE092211	-1.81**	-1.52**	-1.68**	+1.04	-1.14	-1.12
TSR1	Al803633	-1.50**	-1.51**	-1.51**	-1.20	-1.03	-1.19
TSR1	NM_018128	-1.52**	-1.62**	-1.60**	-1.27	-1.18	-1.18
TTC14	AL040341	+1.15	-1.04	+1.07	-1.52**	-1.10	-1.38
TTC27	NM_017735	-1.54**	-1.32	-1.43	-1.25	-1.25	-1.25
TTC3	AW510696	+1.04	-1.25	-1.00	-1.52**	+1.03	-1.19
TTC7A	AL117512	-1.54**	+1.43	-1.45	+1.27	+1.07	+1.11
TTLL12	BF965437	-1.92**	-1.27	-1.91**	-1.10	-1.16	-1.13
TTLL12	NM_015140	-1.88**	-1.22	-1.68**	+1.12	+1.01	+1.06
TTLL5	AB023215	-1.55**	-1.21	-1.49	-1.14	-1.20	-1.16
TUBA1	AL565074	-1.66**	-1.73**	-1.68**	-1.10	-1.09	-1.09
TUBB3	AL565749	-1.36	-1.52**	-1.37	-1.08	-1.02	-1.04
TUBE1	Al613127	+3.63	+3.21	+3.38**	+1.00	+1.04	+1.02
TWISTNB	AA121481	-1.75**	-1.51**	-1.67**	-1.19	-1.17	-1.19
TWISTNB	AA400421	-1.12	-1.55**	-1.28	-1.02	-1.09	-1.08
UAP1	S73498	-1.52**	-1.53**	-1.52**	-1.13	-1.05	-1.10
UBAP2L	AW051361	-1.55**	-1.31	-1.39	-1.03	-1.12	-1.08
UBAP2L	NM_014847	-1.70**	-1.33	-1.62**	+1.18	+1.06	+1.11
UBAP2L	NM_014847	-1.82**	-1.34	-1.57**	+1.09	+1.07	+1.08
UBE1	NM_003334	-1.82**	+1.45	-1.50	+1.02	-1.01	+1.00
UBE1DC1	NM_024818	-1.04	-1.55**	-1.12	-1.33	-1.13	-1.22
UBE3C	NM_-014671	-1.74**	-1.22	-1.44	-1.00	-1.02	-1.01
UBN1	NM_016936	-1.82**	-1.05	-1.49	+1.21	+1.03	+1.07
UBQLN4	BC0006410	-1.73**	-1.26	-1.62**	+1.16	+1.08	+1.09
UBTF	AU145147	-1.58**	+1.20	-1.21	+1.19	+1.16	+1.18
UBTF	BG341575	-1.53**	-1.22	-1.26	+1.04	-1.12	-1.01
UCHL5	NM_015984	-1.14	-1.53**	-1.16	+1.04	+1.11	+1.06
UCHL5	NM_016017	-1.23	-1.63**	-1.31	-1.17	-1.10	-1.16
UCK2	BC002906	-1.43	-1.60**	-1.43	-1.00	-1.07	-1.02
UHMK1	Al249980	-1.48	-1.77**	-1.49	-1.52**	-1.45	-1.51**
UHMK1	AW173222	-1.70**	-1.17	-1.43	-1.28	-1.18	-1.27
UIP1	BE676218	-1.72**	-1.55**	-1.65**	-1.08	-1.13	-1.10
UIP1	NM_017518	-1.38	-1.69**	-1.49	-1.23	-1.09	-1.22
UMPS	AL080099	-1.65**	-1.59**	-1.62**	+1.02	-1.05	-1.04
UMPS	D86227	-1.57**	-1.54**	-1.55**	-1.06	+1.01	-1.03
UPF1	D86988	-1.74**	+1.29	$-1.62^{* *}$	-1.03	-1.06	-1.04
UPF1	U59323	-1.67**	-1.38	-1.55**	-1.36	-1.43	-1.40
USP14	BG283995	-1.51**	-1.25	-1.49	-1.13	-1.09	-1.12
USP14	NM_005151	-1.47	-1.65**	-1.50**	-1.07	-1.12	-1.10
USP36	AU152298	-1.64**	+1.06	-1.49	+1.02	-1.09	-1.04
USP38	AF211481	-1.69**	-1.46	-1.53**	-1.13	-1.12	-1.12
USP46	AK024318	-1.24	-1.52**	-1.46	-1.14	-1.03	-1.13
USP7	NM_003470	-1.51**	-1.16	-1.24	+1.08	-1.00	+1.07
USPL1	NM_005800	-1.56**	-1.50	-1.53**	-1.21	-1.19	-1.20
UTP14C	BC001149	-1.28	-1.51**	-1.47	-1.14	-1.07	-1.11
UTP15	AA046406	-1.48	-1.66**	-1.55**	-1.05	-1.01	-1.04
UTP20	AF072718	-1.80**	-1.28	-1.54**	+1.00	+1.13	+1.11
VANGL1	NM_024062	-1.81**	-1.25	-1.36	-1.21	-1.19	-1.20
VARS	NM_006295	-1.75**	+1.23	-1.69**	+1.07	+1.15	+1.10
VPRBP	W74375	-1.62**	-1.21	-1.42	+1.05	-1.09	-1.01
VTI1A	BE613520	-1.42	-1.54**	-1.46	-1.20	-1.27	-1.21
WBP11	AF118023	-1.66**	-1.43	-1.53**	+1.30	+1.11	+1.24
WDHD1	AK001538	-1.60**	-1.64**	-1.61**	-1.44	-1.14	-1.29
WDHD1	NM_007086	-1.56**	-1.55**	-1.55**	-1.03	+1.06	-1.02
WDR36	BF439595	-1.57**	-1.21	-1.37	+1.08	+1.05	+1.07
WDR4	AA577678	-2.04**	-1.61**	-1.78**	-1.01	-1.13	-1.04

Gene Symbol	Public ID	IFX 6h	IFX 24h	IFX	CZP 6h	CZP 24h	CZP
WDR4	Al861913	-1.63**	-1.64**	-1.63**	-1.34	-1.28	-1.31
WDR49	BC035512	+2.24	+1.75	+2.20*	+1.11	+1.14	+1.12
WDR62	AC004144	-1.54**	-1.06	-1.36	+1.00	-1.18	-1.08
WDR77	BF975273	-1.59**	-1.78**	-1.64**	+1.01	-1.03	-1.00
WDR89	AW069315	-1.27	-1.58**	-1.39	-1.16	-1.33	-1.24
WDSUB1	W80623	+1.67	+1.44	+1.61**	+1.10	+1.11	+1.10
WHSC1	AF083389	-1.59**	-1.03	-1.30	+1.06	-1.11	-1.00
WHSC1	BE793789	-1.60**	+1.25	-1.41	+1.12	-1.02	-1.02
XBP1	NM_005080	+1.93	+1.61	+1.69**	+1.21	+1.26	+1.23
XPO4	BF968638	-1.68**	-1.52**	-1.57**	-1.05	-1.21	-1.07
XPO4	NM_022459	-1.83**	-1.43	-1.59**	-1.11	-1.25	-1.20
XPO5	AF271159	-1.58**	-1.16	-1.46	-1.04	-1.06	-1.05
XPO6	AL546600	-1.55**	-1.09	-1.49	+1.07	-1.11	-1.10
XPO6	BE966299	-1.59**	-1.12	-1.33	+1.03	-1.08	-1.08
XTP3TPA	NM_024096	-1.95**	-1.84**	-1.89**	-1.01	-1.05	-1.01
YDD19	BF695847	-1.29	-1.79**	-1.32	-1.17	-1.04	-1.14
YIPF4	BC004875	+1.77	+1.20	+1.71*	-1.01	+1.13	+1.06
YTHDC2	AL049305	-1.52**	-1.43	-1.47	-1.13	-1.17	-1.15
ZAK	Al129320	-1.55**	-1.66**	-1.58**	-1.01	+1.03	+1.01
ZC3H5	BE966979	-1.65**	-1.64**	-1.64**	+1.08	+1.16	+1.10
ZC3HAV1	NM_020119	-1.64**	-1.36	-1.49	-1.32	-1.16	-1.24
ZCCHC10	BC005211	-1.05	-1.64*	-1.08	-1.02	-1.01	-1.01
ZDHHC6	NM_022494	-1.22	-1.51**	-1.29	-1.10	-1.04	-1.08
ZDHHC8	AB033118	-1.56**	+1.32	-1.48	+1.10	-1.09	-1.03
ZNF117	AW058673	+1.30	+1.37	+1.33	-1.62**	-1.04	-1.46
ZNF117	NM_024498	+1.04	-1.29	+1.04	-1.54**	-1.27	-1.30
ZNF202	N91520	-1.51**	-1.05	-1.44	-1.12	-1.17	-1.15
ZNF278	AF254083	-1.52**	+1.17	-1.24	+1.03	+1.08	+1.06
ZNF286	BF432238	-1.57**	-1.15	-1.46	-1.05	-1.13	-1.09
ZNF318	NM_014345	-1.55**	+1.03	-1.30	-1.05	-1.10	-1.08
ZNF35	AI809774	-1.53**	-1.56**	-1.55**	-1.20	-1.29	-1.24
ZNF37B	AK026980	-1.36	-1.50**	-1.43	-1.28	-1.34	-1.32
ZNF398	AI761824	-1.68**	-1.32	-1.50**	-1.07	-1.25	-1.13
ZNF398	Al950078	-1.61**	-1.20	-1.37	-1.02	-1.04	-1.03
ZNF407	AB051490	-1.61**	-1.14	-1.29	-1.04	-1.08	-1.07
ZNF584	AW300098	-1.55**	-1.36	-1.46	-1.06	-1.25	-1.10
ZNF593	NM_015871	-1.53**	-1.23	-1.50**	-1.05	-1.05	-1.05
ZNF643	NM_-023070	-1.43	-1.54**	-1.48	-1.38	-1.44	-1.41
ZNF644	NM_016620	-1.32	-1.51**	-1.36	+1.00	+1.12	+1.01
ZNF692	NM_-017865	-1.49	-1.50*	-1.50	-1.28	-1.22	-1.24
ZWILCH	NM_017975	-1.05	-1.68**	-1.18	-1.33	+1.00	-1.19

Supplementary Table 3

Supplementary Table 3. Gene-specific primer pairs used for RT-PCR experiments.

Primer	Sequence 5' $\boldsymbol{\rightarrow}$ 3'	$\mathrm{T}_{\text {anneal }}\left({ }^{\circ} \mathrm{C}\right)$	Amplicon [bp]
ACVR1C (ALK-7) sense	GCTCTGGTCTACCTCTGTTG	55	780
ACVR1C (ALK-7) antisense	ACTTCTGGTCACAAACAACC		
C13orf25_F	CTTCCTGGAGAACAACTCAG	55	534
C13orf25_R	TCTCGTTCTGGACAATTTCT		
ACVR2A sense	ATGGGAGCTGCTGCAAAGTT	55	868
ACVR2A antisense	ACAGTTCATTCCAAGAGACC		
KPNA3_F	CCACCGATTGATGACTTAAT	55	991
KPNA3_R	GACCATCTAGAACCACCTGA		
RNPS1_F	GCTTGCTAGGAGTCAAAGAA	55	522
RNPS1_R	GGTGGAAAATATCTCCATGA		
API5_F	CCAGCATAAAGATGCCTATC	55	576
API5_R	ACAAGTTGCTGTCTTCCACT		
ARHGEF19_F	AGCAAGGCAGTCTACCTCCA	55	239
ARHGEF19_R	ATCCATCGCTGCTTCTCACT		
GDF-1/LASS1_F	GCTTCCTGGCCAACTACT	55	229
GDF-1/LASS1_R	GCTCTGTTCCCAGGACCTGG		
NACA_F	CAGCAGCTGAAATCGATGAA	55	216
NACA_R	TGGCTTCCCCAAAAACTATG		
UHMK1_F	CATTCCTTTTGCCCCTCATA	55	237
UHMK1_R	GCTTTGGAATCACCAGCATT		
PRDX6_F	CAGTGTGCACCACAGAGCTT	57	432
PRDX6_R	CCATCACACTATCCCCATCC		
TGF- β sense	AACCCACAACGAAATCTATG	55	522
TGF- β antisense	GTGGAGCTGAAGCAATAGTT		
IL-6 sense	GAACTCCTTCTCCACAAGCGC	64	333
IL-6 antisense	AGGCAA GTCTCCTCATTGAATCC		
ACVR1B (ALK-4) sense	CTACGATCTCTCCACCTCAG	55	842
ACVR1B (ALK-4) antisense	TAAACGATGATTCAGGCTCT		
ACVR2B sense	ATGACGGCGCCCTGGGTGGC	62	1022
ACVR2B antisense	CCAAAGTCAGCCAGCACGGC		
G3PDH sense	TGAAGGTCGGAGTCAACGGATTTGGT	55	983
G3PDH antisense	CATGTGGGCCATGAGGTCCACCAC		
IL-1 β sense	ATGGCAGAAGTACCTGAGCTCG	55	349
IL-1 β antisense	CATCGTGCACATAAGCCTCGT		
ICAM-1 sense	GCTCTGTTCCCAGGACCTGG	62	351
ICAM-1 antisense	GCAGCGTAGGGTAAGGTTCTTG		

Supplementary Table 4

Supplementary Table 4. List of antibodies used for experiments. Antibodies were diluted in 5\% (w/v) low-fat milk powder in TTBS. HRP=horseradish peroxidase.

Method	Antibody	Species	Dilution	Manufacturer
Western blot	Anti-GDF-1 (G17)	Goat	1:500	Santa Cruz Biotechnology
	Anti- β-actin	Mouse	1:60,000	Sigma Aldrich
	Anti-pSmad2/3	Rabbit,	1:500	Cell Signalling Technology
	Anti-Smad2/3	Rabbit	1:1000	Cell Signalling Technology
	Anti-G3PDH	Mouse	1: 2,000	Santa Cruz Biotechnology
	Anti-pSTAT3	Rabbit	1:500	Cell Signalling Technology
	Anti-STAT3	Rabbit	1:100	Cell Signalling Technology
	Anti-LASS1	Goat	1:500	Everest Biotech Ltd.
	Anti-mouse-HRP		1:1,000	Amersham Biosciences
	Anti-rabbit-HRP		1:1,000	Amersham Biosciences
	Anti-goat-HRP		1:1,000	Sigma Aldrich

Supplementary Table 5

Supplementary Table 5

Overview of the 20 transcripts regulated by IFX and CZP.

Gene	Probe ID	Function	Reference
ANKRD12; Ankyrin repeat domain 12	212286_at	Transcription regulation	[1]
ARHGEF19; Rho guanine nucleotide exchange factor (GEF) 19	226857_at	Regulation of Rho GTPases activity	[2]
C13orf25; microRNA host gene 1	232291_at	Overexpressed in some cancer types; interaction with the oncogene MYC	[3]
GDF-1/LASS1; Growth differentiation factor $1 /$ Longevity assurance gene 1	206397_x_at	GDF-1: regulation of left/right patterning in mice; embryonic development; growth and differentiation LASS1: ceramide synthase	$[4,5,6][7]$
HNRPA1; Heterogeneous nuclear ribonucleoprotein A1	200016_x_at	Complex formation with heterogeneous nuclear RNA (hnRNA); degradation of $\operatorname{I\kappa B} \alpha$; mRNA maturation; telomere and telomerase regulation	[8, 9]
KPNA3; Karyopherin alpha 3 (importin alpha 4)	221502_at	Nuclear import of proteins like NF-kB;	[10]
LOC284702; Hypothetical protein LOC284702	225786_at	Q7Z4P1, including a signalpeptide and a transmembrane domain	
LOC440944; Hypothetical gene supported by AK128398	1555858_at		
NACA; Nascent-polypeptide-associated complex alpha polypeptide	200735_x_at	Regulation of human erythroid-cell differentiation; interaction with cJUN and FADD; TATA box binding	[11]
PRDX6; Peroxiredoxin 6	200844_s_at	Redox regulation of the cell; involved in cell cycle arrest	[12]
RNPS1; RNA binding protein S1, serine-rich domain	200060_s_at	mRNA nuclear export and mRNA surveillance; regulation of non-sense mediated mRNA decay pathway	[13]
RPL17; Ribosomal protein L17	200038_s_at	Component of the ribosomal 60S subunit	[14]
RPL37A/PLK1; Ribosomal protein L37a/ polo-like kinase 1 (Drosophila)	201429_s_at	Component of the ribosomal 60S subunit	[15]
SFRS7; Splicing factor, arginine/serine-rich 7	201129_at	Pre-mRNA splicing	[16]
SLC16A10; Solute carrier family 16 , member 10	219915_s_at	Plasma membrane amino acid transporters, aromatic amino acids transporter	[17]

SLC16A3; Solute carrier family 16, member 3	202855_s_at	Monocarboxylic acid transporter (lactate, pyruvate and ketone)	[17]
TncRNA; Trophoblast- derived non-coding RNA	214657_s_at	Non-protein coding RNA 84	[18]
UHMK1; U2AF homology motif (UHM) kinase 1	1552656_s_at	Cell cycle progression; regulation of nuclear protein export; belongs to Ser/Thr protein kinase family	[19]
	221419_s_at	No reference sequence transcript currently supports this probe set, though EST sequences are available from the design information.	
	230256_at	No transcripts are known to correspond to this probe set at this time, but a UniGene cluster is known to correspond to it.	

1 Zhang A, Li CW, Chen JD. Characterization of transcriptional regulatory domains of ankyrin repeat cofactor-1. Biochem Biophys Res Commun 2007;358:1034-40.
2 Wang Y, Suzuki H, Yokoo T, et al. WGEF is a novel RhoGEF expressed in intestine, liver, heart, and kidney. Biochem Biophys Res Commun 2004;324:1053-8.
3 Rinaldi A, Poretti G, Kwee I, et al. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma 2007;48:410-2.

4 Andersson O, Bertolino P, Ibanez CF. Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development. Dev Biol 2007;311:500-11.
5 Moustakas A, Pardali K, Gaal A, et al. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett 2002;82:85-91.

6 Rankin CT, Bunton T, Lawler AM, et al. Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat Genet 2000;24:262-5.

7 Senkal CE, Ponnusamy S, Rossi MJ, et al. Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol Cancer Ther 2007;6:712-22.
8 Hay DC, Kemp GD, Dargemont C, et al. Interaction between hnRNPA1 and IkappaBalpha is required for maximal activation of NF-kappaB-dependent transcription. Mol Cell Biol 2001;21:3482-90.
9 Ford LP, Wright WE, Shay JW. A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene 2002;21:580-3.

10 Fagerlund R, Kinnunen L, Kohler M, et al. NF-\{kappa\}B is transported into the nucleus by importin \{alpha\}3 and importin \{alpha\}4. J Biol Chem 2005;280:15942-51.
11 Lopez S, Stuhl L, Fichelson S, et al. NACA is a positive regulator of human erythroid-cell differentiation. J Cell Sci 2005;118:1595-605.
12 Kim SY, Jo HY, Kim MH, et al. H2O2-dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via up-regulation of iPLA2 activity. J Biol Chem 2008;283:33563-8.
13 Viegas MH, Gehring NH, Breit S, et al. The abundance of RNPS1, a protein component of the exon junction complex, can determine the variability in efficiency of the Nonsense Mediated Decay pathway. Nucleic Acids Res 2007;35:4542-51.
14 Herault Y, Michel D, Chatelain G, et al. cDNA and predicted amino acid sequences of the human ribosomal protein genes rpS12 and rpL17. Nucleic Acids Res 1991;19:4001.
15 Hoof T, Fislage R, Tummler B. Primary sequence of the human ribosomal protein L37a. Nucleic Acids Res 1992;20:5475.

16 Graveley BR, Maniatis T. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol Cell 1998;1:765-71.

17 Meredith D, Christian HC. The SLC16 monocaboxylate transporter family. Xenobiotica 2008;38:1072-106.

18 Clemson CM, Hutchinson JN, Sara SA, et al. An Architectural Role for a Nuclear Noncoding RNA: NEAT1 RNA Is Essential for the Structure of Paraspeckles. Mol Cell 2009.
19 Boehm M, Yoshimoto T, Crook MF, et al. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. Embo J 2002;21:3390-401.

