hospital, Larbert; Gastroenterology, Glasgow Royal Infirmary, Glasgow, UK

nant stricture prevented EUS in 3 patients while in 3 patients squamous carcinomas (15.3%) and 1 carcinoid (1.7%). A malign-
pet. The majority had adenocarcinoma (49/59, 83.1%) with 9

case was reviewed at the local multi-disciplinary team (MDT) CT, EUS and PET between October 2008 and November 2011. Each

recurrence with a one year postoperative survival of only 53%. Under-staging of these cancers pre-operatively with curative surgery of Gastric and Oesophageal Cancer (SAGOC) previously reported with oesophageal or gastric cancer in Scotland. The Scottish Audit

Introduction

of reflux episodes than subjects with no +ve samples (57%;range 29–40%) vs. 19%(12–53%), p < 0.02). Only 6/500 samples contained more than 250 ng/ml pepsin.

Conclusion

was 25 ng/ml. RDBiomed Ltd). The cut off value to determine pepsin positivity

testing compared to negative samples both after lunch (acid 11 (5–22.47) and non-acid 15 (3–25, 46).

Saliva samples positive for pepsin were preceded by significantly more reflux events during the 60 min interval before sampling compared to negative samples both after lunch and dinner (+ve pepsin 6 reflux (4–9) vs. -ve pepsin 3 reflux (1–5) p < 0.0001). Supine acid exposure and no. of reflux episodes was not signifi-
cantly different with +ve or -ve morning samples. Subjects with 5 saliva samples +ve for pepsin had a higher ratio of proximal reflux episodes than subjects with no +ve samples (57%;range 29–40%) vs. 19%(12–53%), p < 0.02). Only 6/500 samples contained more than 250 ng/ml pepsin.

Disclosure of Interest

None Declared

PTU-150 CONCORDANCE BETWEEN ENDOSCOPIC ULTRASOUND (EUS) AND POSITRON EMISSION TOMOGRAPHY (PET) IN THE STAGING OF UPPER GASTROINTESTINAL CANCER – A DISTRICT GENERAL EXPERIENCE

doi:10.1136/gutjnl-2013-304907.240


Introduction

Approximately 1700 patients/year are diagnosed with oesophageal or gastric cancer in Scotland. The Scottish Audit of Gastric and Oesophageal Cancer (SAGOC) previously reported under-staging of these cancers pre-operatively with curative surgery attempted too often. This resulted in incomplete resection and recurrence with a one year postoperative survival of only 53%. Increasing emphasis has therefore been placed on accurate pre-oper-

ative staging. Current guidelines advise multimodal staging with CT, EUS +/- laparoscopy if gastric involvement. Recently the use of PET staging has increased. We sought to establish the concordance between EUS and PET in the staging of upper GI cancer within a large district general hospital.

Methods

A retrospective study was performed in patients with oesophageal or gastric cancer referred for multimodal staging with CT, EUS and PET between October 2008 and November 2011. Each case was reviewed at the local multi-disciplinary team (MDT) meeting. MDT outcome forms were collated and a casenote review performed. Baseline demographics, tumour characteristics and TNM staging was recorded.

Results

89 patients (45 male) were referred for both EUS and PET. The majority had adenocarcinoma (49/59, 83.1%) with 9 squamous carcinomas (15.3%) and 1 carcinoid (1.7%). A malig-
nant stricture prevented EUS in 3 patients while in 3 patients CT-PET revealed metastatic disease and EUS was cancelled. 55 patients (40 male) underwent staging with both modalities. Concordance of N staging between EUS and PET was 75.9%. In 13/53 patients EUS altered prior PET staging, upstaging from N_0 to N_1 in 12/15 (91.4%). In patients undergoing EUS-FNA (10 mediastinal, 1 sub-diaphragmatic), 2/11 (18.2%) patients were found to have malignant lymphadenopathy affecting PET negative nodes while in 1 patients a PET positive node was found to be benign. EUS was more accurate in predicting resection N stage (65%) than PET (38.9%) with both tending to under-estimate. In patients with T3 disease there was a significant difference in N staging between patients undergoing resection and those treated palliatively (p < 0.05).

Conclusion

Nodal staging by EUS and PET differs in a significant proportion of patients undergoing pre-operative work-up for upper GI cancer. In the majority of cases PET underestimates nodal staging. However, technical difficulties may preclude EUS while the finding of distant metastases at PET prior to EUS may prevent unnecessary investigations. CT and EUS remain the mainstay of pre-operative staging in oesophageal and gastric cancers but PET is a useful adjunct.

Disclosure of Interest

None Declared

PTU-151 HIGH RESOLUTION MANOMETRY PROFILE OF HIATAL HERNIA IN PATIENTS BEFORE AND AFTER FUNDOPPLICATION

doi:10.1136/gutjnl-2013-304907.241

1,K Blinik, *E Klimacka-Nawrot, *J Kurek, *B Blonska-Fajfrowska, *A Stadnicki. *Basic Biomedical Sciences, Medical University of Silesia, Sosnowiec; *Department of Surgery, District Hospital, Jaworzno, Poland

Introduction

Current data relating to esophageal motility evaluated by high resolution manometry (HRM) in presence of hiatal hernia (HH) is equivocal. This study was aimed to compare HRM variables in patients with HH before and after fundoplication and to evaluate diagnostic performance of HRM in detecting sliding HH.

Methods

Sensitivity and specificity of HRM were assessed in 31 patients (20 females; mean age 48.2) with gastroesophageal reflux disease who were qualified for Nissen fundoplication and underwent preoperative HRM. Intraoperative diagnosis of HH was the gold standard. Area under curve (AUC) of receiver operating characteristic (ROC) reflecting diagnostic accuracy of HRM was also computed. Eleven patients (5 females; mean age 52.1) out of 31 were selected who underwent both: HRM before fundoplication (preoperative group) and at least 3 months after surgery (postoperative group). Manometric protocol included 10 consecutive swallows of 10 ml of water. Variables from pre and postoperative group were compared using paired Wilcoxon test.

Results

29 patients out of 31 were found to have HH during surgery while 14 patients had manometric criteria for HH (mean HH size was 2.44 cm). Sensitivity and specificity of HRM in detecting HH were 48% and 100% respectively. AUC under ROC curve for HRM was 0.74 indicating limited usefulness of this method; regarding threshold value of 0.8 for clinical practise. HRM profile of HH in preoperative group is characterised by significantly lower minimal basal esophagogastric junction (EGJ) pressure as well as integrated relaxation pressure (IRP) comparing to postoperative group. HRM profile of HH in preoperative group is characterised by significantly lower minimal basal esophagogastric junction (EGJ) pressure as well as integrated relaxation pressure (IRP) comparing to postoperative group.

Discussion

Under fundoplication HRM was 0.74 indicating limited usefulness of this method; regarding threshold value of 0.8 for clinical practise. HRM profile of HH in preoperative group is characterised by significantly lower minimal basal esophagogastric junction (EGJ) pressure as well as integrated relaxation pressure (IRP) comparing to postoperative group. HRM profile of HH in preoperative group is characterised by significantly lower minimal basal esophagogastric junction (EGJ) pressure as well as integrated relaxation pressure (IRP) comparing to postoperative group.