osophageal adenocarcinoma, which is increasing in incidence in developed countries. Risk factors for BO are age, being white Caucasian and male gender. To our knowledge, no differences have previously been found between the mean length of Barrett’s segment or the mean age of BO patients in differing ethnic groups.

Methods We performed a retrospective analysis of electronic patient records at St George’s Hospital, which serves a large ethnically diverse population. Patients with a diagnosis of BO were identified from gastroscopy records dating from 2009 to 2012. Demographic information was collected for every patient. Patients of Indian sub-continent Asian (ISA) origin were identified using surname as previously described. We looked at length of Barrett’s, gender and age in ISAs, compared to other ethnic groups.

Results 499 procedures were identified where the diagnosis was BO. Multiple reports for individual patients were excluded, identifying 378 patients with an endoscopic diagnosis of BO. Mean age of the sample was 67 years (SD 14.4). 11% of the sample were of ISA origin, 69% were of non-ISA origin. No significant difference was found in the mean length of the Barrett’s segment between males and females. However, male patients with BO were younger than females (65.9 years vs. 70.2 years; p = 0.005). No significant difference was found in the mean Barrett’s length or mean age between ISAs and non-ISAs. Patients of ISA origin were not found to have any significant difference between mean length of Barrett’s segment or mean age. Patients of non-ISA origin had no significant difference was in mean Barrett’s length between males and females, but there was a statistically significant difference between mean age of male Barrett’s patients (65.1 y) and female Barrett’s patients (70.7 y; p = 0.01) in this group.

Conclusion In our ethnically diverse population, male patients with Barrett’s oesophagus are younger than female patients. Furthermore, this difference occurs only in patients of non-Indian sub-continent origin. This implies that there may be an environmental factor in the UK which confers an accelerated progression of Barrett’s oesophagus in male patients. Further study in this area is warranted.

Disclosure of Interest None Declared.

REFERENCES

PTU-168 ‘TOMATOES WEARING SUNGLASSES’ ARE HARD TO SWALLOW – AN ANALYSIS OF THE PREVALENCE, PRESENTING FEATURES & INVESTIGATION FINDINGS IN PATIENTS WITH EOSINOPHILIC OESOPHAGITIS AT A DISTRICT GENERAL HOSPITAL

doi:10.1136/gutjnl-2013-304907.258

PTU-169 THE TWO WEEK WAIT – IS IT ANY GOOD AT DIAGNOSING OESOPHAGO-GASTRIC CANCERS?

doi:10.1136/gutjnl-2013-304907.259

Introduction Eosinophilic Oesophagitis (EoE) is a recently described disorder of unclear aetiology and prevalence. Most published studies emanate from international and tertiary referral centres, with a greater focus on the paediatric population, where the disease is better described. We present one of the largest case series of adult patients with EoE managed in a typical UK district general hospital. We describe the patient demographics, presenting features and investigation findings.

Methods We performed a retrospective analysis of clinical records at the East and North Hertfordshire NHS trust from January 2009 to December 2012 to identify patients with EoE. The diagnosis of EoE was confirmed by symptoms, the presence of more than 15 eosinophils (likened by pathologists to “tomatoes wearing sunglasses”) per HPF on oesophageal biopsy, and the absence of an alternative diagnosis. Data fields collected included gender, history of atopy, presenting symptoms, endoscopic findings, peripheral eosinophil count, and serum allergy testing.

Results We identified 45 patients with EoE in this 3 year period. With an estimated catchment population of 545,820, the prevalence of EoE in our local population is about 0.8 per 10,000 people. 33 patients were male and 12 were female, giving an approximate male:female ratio of 3:1. The average cohort age was 52 years. Presenting symptoms were dysphagia in 82% (n = 37), food bolus obstruction in 36% (n = 16), reflux in 24% (n = 11) and abdominal pain in 9% (n = 4). The time to diagnosis ranged from 0 to 15 years.

On endoscopy, 71% (n = 32) had typical features of EoE. The remaining 29% had a normal gastroscopy. We estimate that EoE is responsible for about 2% of all gastroscopies performed for dysphagia at our trust.

32 patients were questioned about a history of atopy; 81% (n = 26) had a confirmed history. Of the 41 patients who had a full blood count cheque, 15% (n = 6) had a peripheral eosinophilia. Total IgE levels were checked in 17 patients; 16 (94%) had elevated levels. Food allergy testing for cod, wheat, egg, soya, milk and nuts was performed in 15 patients. 9 of these patients (60%) had a positive test, the most common allergens being wheat (n = 7) and egg (n = 5).

Conclusion EoE is a common diagnosis in patients presenting with dysphagia. This case series highlights the importance of obtaining oesophageal biopsies when endoscopic appearances are normal. Given the prevalence of EoE, and the variation in assessment even within one trust, national guidelines are required to standardise diagnostic and management pathways for patients with EoE.

Disclosure of Interest None Declared.
When reviewing all 2WW referrals for gastroscopy the cancers pick up was 10% with the majority of examinations being normal or identifying insignificant findings.

Conclusion The two week wait referral system is often considered to be a poor method for detecting oesophagogastric cancer. In our data 10% patients referred in this manner had oesophagogastric cancer which is consistent with existing data. However when looking at all cases of of cancer diagnosed in this time period the 2WW represents the pathway for diagnosis for over half our malignancies (56%). Our cohort of patients showed similar TNM staging at the time of diagnosis irrespective whether they were referred routinely or on an urgent basis.

This suggests that the 2ww is an important pathway for referral of upper gastrointestinal malignancies but unfortunately does not identify patients at earlier stage. This is probably due to the lack of symptoms in early oesophagogastric cancer and strengthens the argument for identifying patients at an earlier stage perhaps by screening or surveillance of high risk groups.

Disclosure of Interest None Declared

Abstract PTU-171 Table 1 Buried Barrett’s with and without dysplasia

<table>
<thead>
<tr>
<th>Biopsy:</th>
<th>Buried Barrett’s in endoscopic therapy naive patients</th>
<th>Buried Barrett’s in patients post EMR procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>16/83 (19%)</td>
<td>22/83 (26.5%)</td>
</tr>
<tr>
<td>LGD</td>
<td>2/83 (2.4%)</td>
<td>9/83 (10.8%)</td>
</tr>
<tr>
<td>HGD</td>
<td>14/83 (16.8%)</td>
<td>13/83 (15.6%)</td>
</tr>
<tr>
<td>IMC</td>
<td>9/83 (10.8%)</td>
<td>4/83 (4.8%)</td>
</tr>
<tr>
<td>HGD + IMC</td>
<td>2/83 (1.2%)</td>
<td>8/83 (9.6%)</td>
</tr>
<tr>
<td>LGD</td>
<td></td>
<td>5/83 (6%)</td>
</tr>
</tbody>
</table>

Conclusion

Our study shows that in the pre-EMR cohort, there was an overall prevalence of 15.7% of buried Barrett’s and a 14.5% prevalence of buried Barrett’s with high grade neoplasia (HGD or IMC).

Our results in the post EMR cohort shows an overall prevalence of 35.7% of buried Barrett’s with 9.6% prevalence of buried high grade neoplasia (HGD or IMC) suggesting that a third of patients undergoing EMR for Barrett’s dysplasia harbour buried Barrett’s and a third of these patients harbour high grade neoplasia. This has significant implications for post EMR endoscopic assessment and surveillance.

The results from our study shows that there is a need to develop and maintain proficiency in sampling techniques in patients with Barrett’s oesophagus. It also shows that the biopsies particularly from those with dysplasia should be carefully reviewed by...