393), dementia (n = 9) and other (n = 311). The lowest mortality was seen in patients with HNC (30 day mortality = 5.2%, 1 year mortality = 32.6%). In comparison, 30 day mortality in all other groups was significantly higher (8.47% in neurological diseases, 15.86% in dysphagic stroke, 40.77% in dementia and 11.25% in ‘other’ indication, p < 0.01). Mortality was also significantly higher at one year (p < 0.01). There was no significant difference in mortality when comparing radiologically inserted and percutaneous endoscopic gastrostomies. Higher mortality rates were seen in patients aged 60 years or above at 30 days (OR 2.439 (1.666 – 3.731) p < 0.0001) and also at 1 year (OR 3.140 (0.268 – 6.600) p < 0.0001). Albumin less than 30 g/L was also associated with significantly higher 30 day (OR 4.486 (3.067 – 6.561) p < 0.0001) and 1 year mortality outcomes (OR 2.319 (1.830 to 2.939) p < 0.0001). In accordance with recent published data, our findings would support an elevated CRP (>3 mg/L) being a factor associated with 30 day mortality (OR 9.930 (1.199 to 66.51) p < 0.0001), inpatient PEG placement decreased the risk of death (OR = 0.529 [p = 0.005]).

Conclusion The previous scoring system demonstrated reasonable predictive proficiency but the area under the ROC curves were not >0.8. The recognition of further predictors of 30-day mortality allows for remodelling of the score which may improve the accuracy. However, future prospective, multicentre studies with defined outcomes are necessary to improve data collection. Additionally, more information is needed about cause of 30-day mortality and importantly quality of life following PEG insertion.

Disclosure of Interest None Declared.