Abstract PWE-003 Table 1

<table>
<thead>
<tr>
<th></th>
<th>“White”</th>
<th>“Asian” or “Asian British”</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer detection</td>
<td>6.13%</td>
<td>0.99%</td>
<td><0.08</td>
</tr>
<tr>
<td>PDR</td>
<td>57.36%</td>
<td>48.09%</td>
<td><0.002</td>
</tr>
<tr>
<td>ADR</td>
<td>35.64%</td>
<td>31.68%</td>
<td><0.02</td>
</tr>
</tbody>
</table>

was correlated to the database containing ethnic origin data and analysed.

Results 851 screened individuals (colonoscopy), 466 individuals had polyps (394 adenomas), PDR = 54.76%, ADR = 46.30%, cancer detection rate = 5.41%.

734 “White” individuals (86.25%) 45 individuals had cancer (cancer detection rate = 6.13%)

421 individuals had polyps, PDR = 57.36% (95% CI: 53.75–60.89%), 353 individuals had polyps, ADR = 48.09% (95% CI: 44.50–51.71%).

101 “Asian or Asian British” (11.87%) 1 individual had cancer (cancer detection rate = 0.99%) 36 individuals had polyps, PDR = 35.64% (95% CI: 26.99–45.35%) 32 individuals had polyps, ADR = 31.68% (95% CI: 23.42–41.29%).

16 “Mixed”, “Black or Black British” or “Other Ethnic Groups” (1.88%) 0 cancers, 8 individuals with polyps/adenomas (PDR/ADR = 50%).

Too few to meaningfully analyse

Conclusion This analysis reveals a statistically significant lower ADR and PDR for South Asian screened individuals when compared to Caucasian (White) individuals. There is also a strong trend showing a lower cancer detection rate. This is important for clinicians to be aware of so that they can fully inform individuals undergoing colonoscopic screening.

For regions with large South Asian populations, this observation can be used to appropriately plan services. ADR and cancer detection rates in these regions may be lower and may be a factor in the regional variations of ADR and cancer detection across the BCSP.

REFERENCE

Disclosure of Interest None Declared.
Methods We performed a retrospective analysis of all patients undergoing CT imaging of the large bowel, both CT colonography or plain abdominal CT (if CT colonography was not possible) at one south London hospital in a 13 month period between 2012–2013. Any extracolonic findings were determined either significant, where requiring further investigation or treatment, or insignificant by the reviewer. Any subsequent outcome of the significant findings was also sought.

Results A total of 257 scans were reviewed comprising of 250 (97%) CT colonography and 7 (3%) plain abdominal CTs in 104 (40%) male and 153 (60%) female patients. The average age was 68 years (range 39–91). A total of 163 (63%) of scans detected at least one extracolonic finding, with 55 (21%) of these significant. Sites included 13 liver, 7 lung, 6 pancreatic, 5 renal and 5 adrenal. Further investigation based on these findings revealed 5 (1.9%) malignancies. One patient was found to have a renal cell carcinoma and went on to have curative surgery. One patient was diagnosed with pancreatic cancer and one with hepatocellular carcinoma, both of which were managed palliatively, and one patient was found to have peritoneal recurrence of a previously treated colonic adenocarcinoma. One scan discovered lung and liver metastases along with the causative colonic primary. Other notable findings included a 5.3cm AAA and a pulmonary embolus seen in a segmental lower lobe pulmonary artery. There were a 209 insignificant findings in 139 (54%) of the CTs, with a maximum of 5 in a single scan.

Conclusion This study helps to highlight the potential additional benefit of CT colonography over endoscopic visualisation of the large bowel. The prevalence of extracolonic findings in this cohort was high, in keeping with previous studies, with CT colonography having value as its detection of extracolonic malignancies, staging and other serious conditions. However there was also a substantial rate of additional investigation for subsequently benign findings.

REFERENCES

Disclosure of Interest None Declared.