also has an intermediate response to second line therapy. Both scores are useful tools to aid clinical decision making but do not replace timely multidisciplinary care for these patients.

REFERENCES

Disclosure of Interest None Declared.

OC-003 GENOME-WIDE EPIGENETIC ANALYSIS IN CHILDHOOD-ONSET CROHN’S DISEASE IMPLICATES MIR21

1. A1 Adams*, 1NA Kennedy, 2R Hansen, 3NT Vertham, 4KR O’Leary, 4HE Drummond, 4Cl Noble, 4E El-Omir, 4Rk Russell, 4DC Wilson, 4ER Nimmo, 4GL Hold, 4J Satsangi.
2. Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; 3Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK; 4Department of Paediatric Gastroenterology, Royal Hospital for Sick Children, Glasgow, UK; 5Paediatric Gastroenterology and Nutrition, Child Life and Health, Royal Hospital for Sick Children, Edinburgh, UK

Introduction DNA methylation influences transcriptional activity and marks sites of active transcription. Technological developments allow the rapid assessment of methylation state at millions of sites across the genome. The aim of this study was to identify genes with a possible role in Crohn’s disease pathogenesis, and candidate genes for methylation based diagnostic biomarkers.

Methods Using the Illumina 450k platform we analysed genome-wide DNA methylation in symptomatic children who underwent diagnostic colonoscopy, half of whom were diagnosed with CD and half had no pathology. Replication was performed in children with established CD vs. symptomatic non-disease controls. Further targeted replication by pyrosequencing was performed in adults with CD vs. healthy controls, with qPCR and microarray data to analyse expression.

Results Meta-analysis of the combined paediatric datasets (n = 66) identified 165 individual CpGs with epigenome-wide significance (Bonferroni correction) and 138 differentially methylated regions (DMR). Methylation changes were significantly enriched (p < 0.0001) in proximity to loci implicated by genome-wide association studies (GWAS).

The strongest result by each approach was MicroRNA 21, within the autophagy gene VMP1 (p = 1.2 × 10^-14), 48 kb from GWAS SNP rs1292053. In adults with CD we replicated MIR21 hypomethylation (p = 6.6 × 10^-5, n = 172), and showed increased expression in blood (p < 0.005, n = 66). Intestinal expression increased with inflammation in CD (p = 1.4 × 10^-4, n = 99) but not controls (n = 73).

Linear discriminant analysis of methylation in the paediatric discovery cohort accurately predicted disease state in the paediatric replication cohort (94% sensitivity, 100% specificity) based on methylation at two CpG sites.

Conclusion MIR21 emerges as a target for further investigation based on methylation and expression, further strengthened by other positive findings – notably dysregulation in dysplasia and colorectal cancer in IBD, an established role in T-cell differentiation, and protection from DSS-induced fatal colitis by MIR21 knockout. These data demonstrate a novel approach for identifying biological variations associated with germ-line variants identified by GWAS, and demonstrate translational potential for biomarker development and therapeutic target discovery.

Disclosure of Interest None Declared.

OC-004 THIOPURINE INDUCED PANCREATITIS IN INFLAMMATORY BOWEL DISEASE: CLINICAL FEATURES AND GENETIC DETERMINANTS

1. GA Heap*, 2A Singh, 3C Beeeza, 4MN Weedon, 5A Cole, 6T Creed, 7E Greig, 8P Irving, 9J Lindsay, 10J Mawdley, 11Z Mazhar, 12P Orchard, 13D Reffitt, 14A Holden, 15T Ahmad on behalf of The International IBD Genetics Consortium. 1University of Exeter, Exeter, UK; 2Royal Derby Hospital, Derby, UK; 3University Hospitals Bristol NHS Foundation Trust, Bristol, UK; 4Taunton and Somerset NHS Foundation Trust, Taunton, UK; 5Guy’s and St Thomas’ NHS Foundation Trust, London, UK; 6Barts and the London NHS Trust, London, UK; 7West Middlesex University Hospital NHS Trust, Isleworth, UK; 8Bath and Thornhill NHS Trust, Bath, UK; 9Imperial College Healthcare NHS, London, UK; 10UCL East Thames Healthcare NHS Trust, London, UK; 11International Serious Adverse Events Consortium, Chicago, USA

Introduction Pancreatitis is a rare, but important complication of thiopurine treatment. The aims of this project were to a) characterise the clinical features of thiopurine-induced pancreatitis and b) identify clinical useful genetic markers that might predict development of this serious adverse drug reaction.

Methods Patients were identified and recruited from 172 sites (128 UK). Inclusion criteria included a) onset of acute severe abdominal pain within three months of starting thiopurine treatment, b) ≥ two-fold rise in amylase or lipase c) medical opinion implicating thiopurine therapy and drug withdrawal.

Results We recruited 303 patients. Following adjudication 48 cases classified as definite (recurrent pancreatitis on rechallenge) and 195 cases classified as probable (temporal relationship and no other cause for pancreatitis) were taken forward for analyses. 46% of patients were smokers at the time of development of pancreatitis. Patients were treated with a thiopurine for a median of 19 days (95% CI: 17 – 21) before development of pancreatitis. Most cases were mild, with only 5 cases developing single organ dysfunction. 70% of patients were hospitalised with a median length of stay of 4 days (95% CI: 3.2 – 4.8). Neither age (p = 0.08), BMI (p = 0.73) nor smoking (p = 0.59) predicted length of hospital stay or severity of pancreatitis in multivariate analysis. Using a control cohort of 4,109 Crohn’s disease and ulcerative colitis cases we conducted a genome wide association study with these 239 patients. A significant variant was identified in the Class II MHC region (Odds ratio 3.03, p = 2.63 × 10^-10). Differentially methylated regions associated with these 239 patients. A significant variant was identified in the Class II MHC region (Odds ratio 3.03, p = 2.63 × 10^-10). Differentially methylated regions associated with these 239 patients.

Conclusion We describe the largest clinical characterisation of thiopurine-induced pancreatitis to date and use this cohort to undertake a pharmacogenetics genome wide association study that has...
identified a significant association within the Class II MHC region.

Disclosure of Interest None Declared.

OC-005 NOVEL PATHWAY-CENTRIC ANALYSIS REVEALS VARIANTS ASSOCIATED WITH TOXICITY AND RESPONSE TO THIOPURINES IN PATIENTS WITH INFLAMMATORY BOWEL DISEASE

P A Blaker,* 1S Fong, 1J Walker, 3AM Marinki, 3JD Sanderson, 1PM Irving.

1Gastroenterology, Guys and St Thomas Hospitals NHS Foundation Trust, London, UK; 2Genetics and Molecular Medicine, London, UK; 3Purine Research Laboratory, King’s College, London, UK

10.1136/gutjnl-2014-307263.5

Introduction Thiopurines remain the first line immunosuppressants recommended in the management of inflammatory bowel disease (IBD). Unfortunately, 30–40% of patients prescribed these agents develop adverse drug reactions or fail to derive therapeutic benefit. Candidate gene studies have identified loci that explain some of these treatment failures; however a substantial fraction of the genetic contribution remains undefined. Using whole thiopurine pathway analysis the aim of this study was to identify novel loci associated with toxicity and response to azathioprine (AZA)/mercaptopurine (MP) in patients with IBD.

Methods Genomic DNA was extracted from EDTA blood samples of 472 well-characterised IBD patients treated with AZA/MP. We examined exome array data using the Illumina HumanExome Beadchip and restricted the analysis to variants associated with the thiopurine pathway as defined by the KEGG database (100 genes, 639 single nucleotide polymorphisms). Using a case-control design we firstly tested for genetic associations between patients with (n = 154) and without (n = 258) adverse drug reactions, and secondly for polymorphisms differentiating patients with (n = 188) and without (n = 141) response to thiopurines after 12 months of treatment. One year intervention-free clinical response was defined by 3 investigators (PB, PI, JS).

Results Following adjustment for principal components, the minor alleles at ADK rs946185 (p = 0.0078; OR 1.675), SLC28A1 rs2242046 (p = 0.0168; OR 1.600) and ABCA1 rs4149268 (p = 0.033; OR 1.487) were associated with the development of drug toxicity, whereas the minor alleles at ABCB5 rs2301641 (p = 0.0170; OR 0.608), ABCG2 rs4149268 (p = 0.038; OR 0.549) protected against it. The minor allele at RRM2 rs1130609 (p = 3.80 × 10^-5; OR 0.461), which codes a subunit of ribonucleotide reductase involved in the conversion of thio- guanine nucleotide to deoxy-thioguanine nucleotide, and a higher normalised dose of AZA/MP were associated with protection from non-response. Conversely, the minor allele at ABCA1 rs2230808 (p = 0.008; OR 2.585) and Crohn’s disease (p = <0.001; OR 5.007) were associated with non-response to treatment at 12 months.

Conclusion High-throughput sequencing using exome array technology has revealed new loci, other than thiopurine-S-methyltransferase, explaining toxicity and response to thiopurines. Validation of these markers in separate cohorts will allow the development of biomarker panels to predict outcomes prior to the start of treatment.

Disclosure of Interest None Declared.

OC-006 SAFETY AND EFFICACY OF LOW DOSE AZATHIOPRINE AND ALLOPURINOL CO-THERAPY: A LARGE SINGLE CENTRE EXPERIENCE

P Stanoukou*, E Stournaras, C Bull, M Cowan, G Mackenzie, J Sterner, S Coulthard, A Ansal. 1Gastroenterology, East Surrey Hospital, Redhill, UK; 2Institute of Cellular Medicine, Newcastle University Medical School, Newcastle, UK

10.1136/gutjnl-2014-307263.6

Introduction The effectiveness of full dose azathioprine (FDA) for inflammatory bowel disease (IBD) has been questioned in recent scientific literature. A popular strategy to improve its outcomes recommends the use of low dose azathioprine with allopurinol co-therapy (LDAA) for patients profiled as “hypermethylators” (30% of non-responders). The aim of this study was to determine the safety and efficacy of LDAA without using thiopurine metabolite (TM) profiling.

Methods Records of IBD patients treated with LDAA were retrospectively analysed.

Patients who had poor response and/or side-effects to FDA were offered LDAA by all Consultants whilst a single IBD physician also offered LDAA to thiopurine-naive patients. Azathioprine dose was reduced to 25% of the thiopurine methyl transferase (TPMT) adjusted dose (0.5 mg/kg for wild type and 0.25 mg/kg for heterozygotes) followed by conventional haematological monitoring. Non-adherence was assessed by TM measurements. Full response (FR) was defined as steroid free remission (Harvey Bradshaw index ≤3, Truelove-Witts normal) for greater than 3 months after a 3 month induction period for LDAA.

Results Of 300 LDAA patients, adequate data was available for 295 cases. Group 1 (G1) were treated 1st line (n,105) and Group 2 (G2) were switched from FDA to LDAA (n,190). Overall, for both groups, there were 207 (70%) full responders (FR), 20 partial responders (PR) and 68 non-responders (NR). Full response rate was 78% in G1 and 66% in G2. The commonest indication for switching to LDAA was non-response to FDA (n,118).

Analysis of haematological indices revealed significant changes (p < 0.05) in erythrocyte sedimentation rate, white cell count and platelet count after therapy induction.

Myelotoxicity occurred in 5 patients (all NR, WCC >2 and <3.5) and 12 patients had asymptomatic hepatotoxicity (ALT range: 100–700) which resolved by increasing allopurinol to 200 mg in 9 patients (all FR).

Time on treatment: 208 patients took LDAA for more than twelve months with a median length of therapy of 24 months.

Conclusion Appropriately dosed LDAA therapy delivers a therapeutically effective dose of azathioprine without the

<table>
<thead>
<tr>
<th>OC-006 SAFETY AND EFFICACY OF LOW DOSE AZATHIOPRINE AND ALLOPURINOL CO-THERAPY: A LARGE SINGLE CENTRE EXPERIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract OC-006 Table 1</td>
</tr>
<tr>
<td>Indication</td>
</tr>
<tr>
<td>AZA/MP Naïve (LDAA without FDA exposure)</td>
</tr>
<tr>
<td>Switched from FDA to LDAA</td>
</tr>
<tr>
<td>Poor response</td>
</tr>
<tr>
<td>GI intolerance</td>
</tr>
<tr>
<td>Hepatotoxicity</td>
</tr>
<tr>
<td>Myelotoxicity</td>
</tr>
<tr>
<td>“Flu-like” symptoms</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>