London Hospital (RLH), these rates are even higher (12.3% to 13.2% in Reception and 22.9% to 27.3% in Year 6). Our aims were to determine the prevalence of NAFLD in our specialist clinics in our unit and to identify key characteristics of children with NAFLD.

Methods Clinical records of patients who attended specialist paediatric Hepatology and Metabolic clinics at RLH in 2012 were reviewed. We recorded demographic information, serum biochemistry (abnormal ALT - females >35 U/L, males >40 U/L), liver screening tests, hepatic ultrasound results and insulin resistance (HOMA-IR) were calculated.

Results Twelve of 155 patients (8%) (7/62 Hepatology (11%), 5/93 Metabolic (5%) clinics) had evidence of hepatic steatosis on ultrasound. The mean BMI percentile in the Hepatology clinic for NAFLD patients was the 93rd (vs 63rd in non-NAFLD patients, P = 0.005), whereas all patients in the metabolic clinic (irrespective of NAFLD) had BMI above 3.5 standard deviations for age. The mean age of patients with NAFLD was similar to that of patients without NAFLD (12.5 vs. 12.1 years), and there was no significant difference in the proportion of males with NAFLD compared to children without.

All NAFLD patients had elevated ALT (mean 39, range 38–168). Nine patients with normal ALT (mean 16, range 12–23) had undergone abdominal ultrasound and none of these had signs of steatosis. The mean HOMA-IR in those with radiological evidence of steatosis was significantly greater than those with normal ultrasound (7.64 vs. 3.37, p = 0.005). Only two patients had a liver biopsy, both of which showed advanced fibrosis. Nine patients in the metabolic clinic (10%) with elevated ALT (mean 59, range 36–115) had not had a liver screen or ultrasound.

Conclusion Paediatric NAFLD is common in this setting and is associated with raised BMI and elevated insulin resistance. All patients with raised ALT and none with normal ALT, had steatosis on ultrasound in our cohort. This highlights the importance of screening for liver disease including the use of ultrasonography in at-risk patients with abnormal liver chemistry. There is a need for an evidence-based algorithm to guide liver investigation and referral in children with deranged LFTs.

REFERENCE

Disclosure of Interest None Declared.

PTH-081 ENHANCED LIVER FIBROSIS (ELF) TEST PERFORMS BETTER THAN HISTOLOGICAL PARAMETERS IN PREDICTING CLINICAL OUTCOMES IN PATIENTS WITH ADVANCED FIBROSIS DUE TO CHRONIC HEPATITIS C INFECTION

GE Dolman*, A Zaitoun, WL Irving, Nl Guha. NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK; Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham, UK

10.1136/gutjnl-2014-307263.527

Introduction Fibrosis progression in chronic hepatitis C infection is variable. We need tools to identify those patients who will progress rapidly to offer individualised patient management. We aimed to determine the predictors of progression in an unselected cohort of patients with advanced fibrosis.

Methods The study cohort was derived from one centre of the Trent Study of Patients with Hepatitis C Virus Infection, a prospective natural history study commenced in 1991. Inclusion criteria were: a) liver biopsy before 2011 demonstrating advanced fibrosis (Ishak stage ≥3); b) no clinical outcome prior to biopsy; and c) patient did not achieve sustained viral response during follow-up. Sera collected within 6 months of the index biopsy were analysed for ELF. Biopsies were restaged using the Ishak system by one pathologist. Collagen quantification with image analysis was performed on biopsies stained with picrosirius red. A clinical outcome was defined as the first event of: ascites, encephalopathy, variceal haemorrhage, hepatocellular carcinoma, transplant or liver-related death.

Results 136 patients were identified and 87 had sera available for ELF. 29 (33.3%) patients progressed to a clinical outcome (median follow-up 7.2 years). ELF was significantly associated with progression to clinical outcomes in univariate analysis (HR 2.07 [95% CI: 1.54–2.76]; p < 0.001). In a multivariate model including liver function tests, Ishak stage and collagen quantification, only ALP and ELF remained statistically significant (ALP: HR 1.004 [95% CI: 1.001–1.007]; p = 0.016; ELF: HR 1.968 [95% CI: 1.454–2.663]; p < 0.001).

Conclusion Our data suggest that ELF could be used to stratify risk of subsequent progression to clinical outcomes in advanced fibrosis secondary to hepatitis C infection.

Disclosure of Interest None Declared.

PTH-082 DO SERUM MARKERS OF CELL INJURY AND DEATH HAVE POTENTIAL TO BECOME MECHANISTIC MARKERS IN NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD)?

J Grove, DC Antoine, P Kaye, MH Miller, DF Dillon, ME Allison, MW James, EA Wilkes, AP Jackson, IN Guha, DP Williams, GP Aithal*. National Institute for Health Research Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust, Nottingham, UK; Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK; Biomedical Research Institute, University of Dundee, Dundee, UK; National Institute for Health Research Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

10.1136/gutjnl-2014-307263.528

Introduction Degree of hepatocellular injury, necrosis/apoptosis and inflammation may be assessed by the serum markers that reflect the pathogenic process. We investigated the correlation of circulating miR-122, High Mobility Group Box-1 (HMGB1), soluble Fas (sFas) and caspase-cleaved fragment of keratin-18 (CK18) with histological changes in liver biopsy of patients with non-alcoholic fatty liver disease (NAFLD).

Methods Serum analytes were determined in two independent cohorts of patients with NAFLD (derivation cohort n = 165, validation cohort n = 101). Histological parameters were scored using Clinical Research Network system; patients with NAFLD activity scores (NAS) of ≥3 were classified as borderline non-alcoholic steatohepatitis (NASH) and ≥5 as definite NASH.