ORIGINAL ARTICLE

The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells

Michele Cioffi,1 Sara M Trabulo,1 Yolanda Sanchez-Ripoll,1 Irene Miranda-Lorenzo,1 Enza Lonardo,1 Jorge Dorado,1 Catarina Reis Vieira,1,2 Juan Carlos Ramirez,2 Manuel Hidalgo,3 Alexandra Aicher,1 Stephan Hahn,4 Bruno Sainz Jr,1 Christopher Heeschen1,5

ABSTRACT

Objective Cancer stem cells (CSCs) represent the root of many solid cancers including pancreatic ductal adenocarcinoma, are highly chemoresistant and represent the cellular source for disease relapse. However, the mechanisms involved in these processes still need to be fully elucidated. Understanding the mechanisms implicated in chemoresistance and metastasis of pancreatic cancer is critical to improving patient outcomes.

Design Micro-RNA (miRNA) expression analyses were performed to identify functionally defining epigenetic signatures in pancreatic CSC-enriched spheroid-derived cells and gemcitabine-resistant pancreatic CSCs.

Results We found the miR-17-92 cluster to be downregulated in chemoresistant CSCs versus non-CSCs and demonstrate its crucial relevance for CSC biology. In particular, overexpression of miR-17-92 reduced CSC self-renewal capacity, in vivo tumourigenicity and chemoresistance by targeting multiple NODAL/ACTIVIN/TGF-β1 signalling cascade members as well as directly inhibiting the downstream targets p21, p57 and TBP3. Overexpression of miR-17-92 translated into increased CSC proliferation and their eventual exhaustion via downregulation of p21 and p57. Finally, the translational impact of our findings could be confirmed in preclinical models for pancreatic cancer.

Conclusions Our findings therefore identify the miR-17-92 cluster as a functionally determining family of miRNAs in CSCs, and highlight the putative potential of developing modulators of this cluster to overcome drug resistance in pancreatic CSCs.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the deadliest solid cancer and currently the fourth most frequent cause of cancer-related deaths worldwide1 and it has been predicted that by 2030 PDAC will represent the second most frequent cause of cancer-related death.2 Despite expanding research efforts, there has been little substantial therapeutic progress towards improving clinical outcome. Current therapies, including the recently approved drug Nab-paclitaxel (Abraxane),3 only slightly improve median survival and only rarely result in long-term progression-free survival. Therefore, comprehensive elucidation of the mechanisms governing resistance to treatment and rapid relapse in PDAC is urgently needed.

In this context, cancer stem cells (CSCs) have been identified as key players in disease progression and resistance to conventional chemotherapies for many carcinomas4 including PDAC.5,6 Due to their hierarchical organisation, CSCs and non-CSCs share the same mutational/genetic background; however, CSCs are exclusively tumourigenic and chemoresistant. Thus, epigenetic mechanisms likely
account for the strong phenotypical differences between these two cell types. Indeed, several microRNAs (miRNAs) have already been implicated in the regulation of normal stem cells as well as CSCs, but miRs implicated in CSC chemoresistance have remained mostly elusive to date.

MATERIALS AND METHODS

Additional details are provided in online supplementary materials and methods

Primary human pancreatic cancer cells

Human pancreatic tumours were obtained with written informed consent from all patients and expanded in nude mice patient-derived xenograft (PDX). For in vitro studies, tissue fragments were minced, enzymatically digested with collagenase (Stem Cell Technologies, Vancouver, British Columbia, Canada) for 90 min at 37°C and after centrifugation for 5 min at 1200 rpm the pellets were resuspended and cultured in RPMI medium (Roswell Park Memorial Institute), 10% fetal bovine serum (FBS) and 50 units/mL penicillin/streptomycin.

In vivo tumourigenicity and metastasis assays

For tumourigenicity assays, serial dilutions of single cells resuspended in Matrigel (BD Bioscience) were subcutaneously injected into female NUGfpST™ nude mice (Harlan, Laboratories, UK) and tracked for 3 months. For metastasis assays, 5×10⁵ FACSorted mCherry+miR-control and miR-17-92 cells were resuspended in 1X PBS (phosphate buffered saline) and intrasplenically injected into NOD scid IL2 receptor γ chain knockout (NSG) mice as previously described. For serial transplantation experiments, excised tumours were digested and sorted for green fluorescent protein (GFP) and implanted again using equal number of cells. Mice were housed according to institutional guidelines and all experiments were approved by the Animal Experimental Ethics Committee of the Instituto de Salud Carlos III (Madrid, Spain) and performed in accordance with the guidelines for Ethical Conduct in the Care and Use of Animals as stated in The International Guiding Principles for Biomedical Research involving Animals, developed by the Council for International Organizations of Medical Sciences (CIOMS).

Drugs, recombinant proteins and inhibitors

Gemcitabine (Gemzar, Lilly SA, Alcobendas, Spain) was resuspended to a working concentration of 1 μg/mL in PBS. Recombinant NODAL, ACTIVIN A and TGF-β1 were purchased from R&D Systems and resuspended according to the manufacturer’s recommendations.

In vitro treatment of established pancreatic cancers

Two mm³ pieces of low-passage xenograft tissue derived from patients with histologically confirmed PDAC were implanted subcutaneously into NUGfpST™ nude mice (Harlan), and mice were randomised to the respective treatment groups. Size and weight of the pancreatic tumours were monitored. Gemcitabine was administered twice a week (125 mg/kg/mouse intraperitoneally). Doxycycline was administered in drinking water twice a week at a concentration of 2 mg/mL.

More Materials and Methods can be found as online supplementary information.

RESULTS

Enrichment strategy for primary chemoresistant CSCs

To identify miRNA profiles that are most representative of human pancreatic CSCs we used two mutually complementary approaches: First, we used anchorage-independent cultures of primary PDAC cells (ie, spheres) to globally enrich for CSCs (see figure 1A, B and online supplementary figure S1A). Second, CSC-enriched sphere cultures were treated with the standard chemotherapeutic gemcitabine to further enrich for the CSC population via depletion of their more differentiated progenies (see figure 1C, D and online supplementary figure S1B). Consistently, mRNA expression of the NODAL/ACTIVIN/TGF-β1 pathway members ALK4, TGFBRII, SMAD2, SMAD4 and TBBX3, which we have previously shown to be crucial for CSC function, was increased in chemoresistant CSCs (see online supplementary figure S1C). We also noted differential expression of cellular transporters implicated in drug resistance, such as upregulation of the ABC-transporters ABCG2 and ABCB2 and downregulation of the gemcitabine-specific transporters human concentrative nucleoside transporter and human equilibrative nucleoside transporter (see online supplementary figure S1D), both of which are mandatory for gemcitabine uptake. These data were then validated in vivo using the original patient-derived xenografts (PDXs). PDXs were treated with vehicle or gemcitabine (figure 1E), dissociated into single cell suspension, and depleted for contaminating mouse stroma cells (see online supplementary figure S1E). As predicted by our in vitro data, CSCs were enriched following gemcitabine treatment (figure 1F–H) and mRNA expression for members of the NODAL/ACTIVIN/TGF-β1 pathway was also enhanced (figure 1I).

Identification of quiescent and chemoresistant CSCs

In the CSC-enriched fraction isolated from several PDX models we found that the cell cycle regulators p21 and p57 were consistently upregulated and Cyclin D1 downregulated, as compared with the more differentiated non-CSC progenies, at RNA and protein levels (figure 2A,B). Functionally, CSCs showed a significant reduction of cells in S phase and G2-M phase, which was accompanied by a notable enrichment for cells in G0 and G1 phases (figure 2C) and enhanced chemoresistance to gemcitabine (figure 2D). Gemcitabine-treated CSCs showed significant enrichment for cells residing in G0 and G1, which was accompanied by a decrease of cells in S phase (figure 2E) and higher mRNA levels of p21 (cyclin-dependent kinase inhibitor 1A) and p57 (cyclin-dependent kinase inhibitor 1C) as well as downregulation of cyclin-D1 (figure 2F). To further validate the presence of a slow cycling and chemoresistant CSC subpopulation, we stained cells with PKH26 and found that only 2–3% of the originally PKH26-labelled cells had retained strong dye labelling after 4 weeks, indicating that those rare cells had yet to divide (figure 2G and data not shown). Importantly, label-retaining cells were not senescent, but rather showed enhanced sphere formation capacity as compared with label-negative cells (see online supplementary figure S2B) and also expressed higher levels of the CSC surface markers (see online supplementary figure S2A). As these cells were also highly resistant to gemcitabine (figure 2H) our data suggest that within the heterogeneous population of CSCs a subpopulation of quiescent and highly chemoresistant CSCs exists and we thus performed further in-depth investigations to mechanistically dissect these cells.

miR-17-92 is suppressed in quiescent and chemoresistant CSCs

In order to identify epigenetic regulators of more quiescent and thus chemoresistant CSCs, we compared miRNA expression profiles of (1) CSC-enriched sphere-derived cells with adherent cells and (2) Gemcitabine-treated PDXs with vehicle-treated control tumours. Importantly, our experiments were designed to identify miRNAs that bear relevance for CSCs across broad
Figure 1 Enrichment strategies for cancer stem cells. (A) Representative pictures of primary pancreatic ductal adenocarcinoma (PDAC) cells cultured as adherent monolayers or as spheres (s) (left panel). Flow cytometry analysis of CD133+CXCR4+ and CD133+SSEA1+ expression (right panel). (B) RTqPCR analysis of pluripotency-associated genes Oct4, Sox2, Klf4 and Nanog. Data are normalised for ß-Actin expression (n=3; *p<0.05). (C) Presence of CD133+CXCR4+ and CD133+SSEA1+ cells as assessed by flow cytometry in control and gemcitabine resistant (GR) cells established from primary PDAC A6L and 185 cultures (D) Sphere formation capacity (n=3; *p<0.05). (E) Patient-derived xenografts were treated with vehicle or gemcitabine (125 mg/kg/mouse biweekly; treatment from day 7 to day 28). Tumour diameters were measured using callipers, and volumes in mm³ were calculated (n=6; *p<0.05). (F–I) Epithelial cells isolated from explanted/digested control-treated and gemcitabine resistant tumours were analysed. (F) Flow cytometry analysis for CD133 and CXCR4 cell surface expression. (G) Sphere formation capacity. Each bar represents mean sphere number±SD (n=3; *p<0.05). Original magnification ×100. (H) RTqPCR analysis of pluripotency-associated genes and (I) genes involved in NODAL/ACTIVIN signalling (ALK4, NODAL, SMAD2, SMAD4, TGF-β-RII and TGF-β1) (n=3; *p<0.05).
Figure 2 Identification of quiescent and chemoresistant cancer stem cells. (A) RTqPCR analysis of pluripotency-associated genes and genes involved in cell cycle regulation p21, p27, p57, Cyclin-D1. Data are normalised for β-Actin expression (n=3; *p<0.05). (B) Western blot analysis of NANOG and cell cycle proteins p21, p27, p57 and CYCLIN-D1. Adherent (adh); sphere-derived cells (sph). (C) Cell cycle analysis using Ki67 and DAPI staining (n=3; *p<0.05). (D) Flow cytometry analysis for apoptotic cells following 48 h of treatment with gemcitabine (100 ng/mL) as determined with AnnexinV/DAPI staining. (E) Cell cycle analysis using Ki67 and DAPI of gemcitabine-resistant cells (n=3; *p<0.05). (F) RTqPCR analysis of cell cycle genes p21, p27, p57 and Cyclin D1 (n=3; *p<0.05). (G) Representative images of PKH26 labelled cells after 1 day, 14 days and 28 days in culture (upper panel) and flow cytometry analysis (lower panel). (H) Percentage of PKH26+ cells before and after gemcitabine treatment in A6L, 185 and 354 pancreatic ductal adenocarcinoma (PDAC) tumours (n=3; *p<0.05).
populations of patients with pancreatic cancer, and as such we used a panel of primary pancreatic tumours. Of interest, we discovered a small number of miRNAs that were commonly and differentially expressed in gemcitabine-resistant CSCs (figure 3A). Surprisingly, most members of the miR-17-92 cluster, which are regularly found to be upregulated in bulk cancer tissue including pancreatic cancer,22 were also among the set of miRNAs downregulated in chemoresistant CSCs. To further collaborate these findings, we next analysed the miRNA signature of gemcitabine-resistant cells (versus vehicle-treated cells) with the miRNA signature of CSC-enriched spheres (versus adherent cells) and again found consistent and significant downregulation of members of the miR-17-92 cluster together with miR-513a-5p and miR-513b (figure 3B). Importantly, we could confirm the downregulation of the miR-17-92 family members by RTqPCR analysis using an independent set of primary cultures (see online supplementary figure S3A) as well as PKH26-positive (ie, quiescent) cells (see online supplementary figure S3B). Thus, these data provide evidence that a distinct subpopulation of slow-cycling/quiescent pancreatic CSCs exists within the PDAC tumour bulk that is characterised by low expression of the miR-17-92 cluster.

Loss-of-function experiments

We knocked down miR-17-92 in more differentiated cancer cells, which regularly overexpress miR-17-92, using antisense inhibitor of miR-17-92 (termed antagonimir-17-92) in order to investigate putative alterations in stemness features and chemoresistance. Indeed, treatment with antagonimir-17-92 resulted in increased expression of the CSC surface marker CD133 (figure 3C), pluripotency-associated genes and ABC transporters (figure 3D) as well as functionally translated into enhanced self-renewal as determined by sphere formation (figure 3E). Of note, transfected cells showed an increase in cells residing in G0 and G1 phases accompanied by a reduction of cells in S phase (figure 3F), a marked increase in p21 expression (see online supplementary figure S3C), and most importantly increased chemoresistance to gemcitabine (figure 3G). Of note, these cells also showed enhanced in vivo tumorigenicity as evidenced by significantly higher tumour take rates (see online supplementary figure S3D) and faster growth rates (data not shown). Taken together, inhibition of the miR-17-92 cluster in differentiated pancreatic cancer cells gave rise to cells reminiscent of bona fide CSCs with enhanced chemoresistance, supporting the hypothesis that the miR-17-92 cluster negatively controls CSC features.

Gain-of-function experiments

Adversely, overexpression of miR-17-92 in CSCs should counteract CSC stemness properties. To test this hypothesis we used a lentiviral construct expressing GFP and the common precursor of the miR-17-92 cluster (miR-17-92) or a scrambled control (miR-Ctrl). Compared with miR-Ctrl, miR-17-92 cluster overexpression led to efficient upregulation of miR-17-92 family members in CSCs (see online supplementary figure S4A) and subsequent downregulation of CSC surface markers (figure 4A), pluripotency-associated genes (see online supplementary figure S4B) and sphere formation capacity (figure 4B). Intriguingly, miR-17-92 reduced the fraction of cells residing in G0 phase and G1 phase while cells in S phase increased suggesting a less quiescent phenotype (figure 4C). Indeed, we did not observe any alterations in the level of senescence (see online supplementary figure S4C), but rather reduced quiescence, which was functionally validated by PKH26 labelling (see online supplementary figure S4D) and translated into a marked increase in chemosensitivity to gemcitabine (see online supplementary figure 4D) as well as Abraxane and 5-FU (see online supplementary figure S4E). These data demonstrated that miR-17-92 abrogated the more quiescent CSC phenotype and subsequently restored chemosensitivity. Despite the higher proliferation rate of miR-17-92 cells, long-term in vivo tumourigenicity was reduced (figure 4E). During three serial in vivo passages, the highly proliferative miR-17-92 cells gradually lost their potential to expand and eventually exhausted as observed for more differentiated cancer cells, but not for miR-Ctrl CSCs (figure 4F).

Metastatic activity represents an integrative feature of a subset of CSCs.5 While miR-Ctrl CSCs responded robustly to key chemotactic factors, TGF-β1 and NODAL, miR-17-92 CSCs showed markedly reduced responsiveness in terms of migration (see online supplementary figure S4H) and invasion (figure 4G). As predicted by the above experiments, pharmacological inhibition of Alk4 and TGFBR2 reduced the migratory capacity of miR-Ctrl CSCs, while the additional receptor inhibition in miR-17-92 CSCs essentially ablated their entire migratory capacity. Importantly, we validated these findings in vivo by intrasplenic injection of miR-Ctrl-mCherry or miR-17-92-mCherry CSCs to assess liver dissemination and subsequent development of metastasis. Ten weeks postinjection, we found significantly reduced cell dissemination in mice injected with miR-17-92 CSCs, as determined by in situ hybridisation using a human specific Alu II repeat probe (ALU) probe, immunohistochemical analysis for human cytokeratin-19 in extracted formalin-fixed paraffin embedded (FFPE) livers, and RTqPCR analysis of mCherry and hGAPDH mRNA expression in whole liver homogenates (figure 4H).

miR-17-92 targets NODAL/ACTIVIN/TGF-β1 signalling

To begin to understand how the miR-17-92 cluster alters the CSC transcriptome, we used several computational methods to search for potential targets of miR-17-92. TargetScan (http://www.targetscan.org) identified conserved binding sites for several members of the miR-17-92 cluster in the 3′-UTR (untranslated region) of the Activin-like 4 (ALK4 or ACVR1B), TGF-β Receptor-2 (TGFBR2), SMAD2 and SMAD4 genes, a core group of regulatory genes known to govern the stemness and/or metastasis of pancreatic CSCs,16 p21 and p57, main regulators of quiescence23-25 and TBX3, which has been implicated in the regulation of self-renewal of embryonic stem cells26 and breast CSCs27 (see figure 5A and online supplementary figure S5A). To validate these genes as direct functional targets of miR-17-92, we analysed a panel of primary pancreatic cancer cells expressing miR-17-92 or miR-Ctrl under the control of doxycycline (see online supplementary figure S5B). Induction of miR-17-92 resulted in reduced ALK4 cell surface expression (figure 5B) as well as diminished expression of p21, p57, pSMAD2 and Tbx3 at the mRNA (figure 5C) and protein levels (figure 5D). We also validate the regulation of the predicted targets by single members of the miR-17-92 cluster by qPCR analysis following treatment with the indicated antagonims, and while all miR-17-92 members were capable of inhibiting the target genes analysed, miR-92a showed a particular preference for only one of the identified targets (p57) (see online supplementary figure S5C).
Figure 3 Inhibition of miR-17-92 promotes tumourigenicity and chemoresistance. (A) Microarray analysis represented as heat-maps, of differentially regulated miRNAs in control (Ctrl)-treated or gemcitabine (GEM)-treated pancreatic ductal adenocarcinoma (PDAC) cells (red and green boxes indicate upregulation and downregulation, respectively). (B) Venn diagram showing overlap between miRNAs downregulated in gemcitabine-resistant (GR) and sphere (SPH) cultures. (C–G) Primary PDAC adherent cultures were treated with control scrambled (SCR) antagomirs or antagomirs against the miR-17-92 cluster. (C) Flow cytometry analysis and quantification of CD133 cell surface expression (n=3; *p<0.05). (D) RTqPCR analysis of pluripotency-associated genes. Data are normalised for ß-Actin expression (n=3; *p<0.05). (E) Sphere numbers/mL for four primary PDAC cultures (n=3; *p<0.05). (F) Cell cycle analysis using Ki67 and DAPI (n=3; *p<0.05). (G) Chemoresistance to gemcitabine determined with AnnexinV/DAPI staining after 48 h treatment (n=3; *p<0.05).

Figure 4 Overexpression of miR-17-92 reverses quiescence and chemoresistance. (A–H) Cancer stem cells (CSCs) were infected with a control lentivirus (miR-Ctrl) or a lentivirus overexpressing the pre-miR-17-92 cluster (miR-17-92) followed by comparative analyses. (A) Fold change in surface expression of CD133 and SSEA1. Dashed line represents levels obtained in miR-Ctrl samples (n=3; *p<0.05). (B) Sphere formation capacity (n=3; *p<0.05). (C) Cell cycle analysis using Ki67 and DAPI (n=3; *p<0.05). (D) Chemoresistance by AnnexinV/DAPI staining after treatment with gemcitabine (n=3; *p<0.05). (E) In vivo tumourigenicity results. CSC frequencies (Freq) determined using the extreme limiting dilution analysis algorithm (http://bioinf.wehi.edu.au/software/elda/index.html) (*p<0.05). (F) In vivo serial transplantation results. Tumour volumes (mm³) were determined at indicated times. At 5 weeks postimplantation, tumours were explanted and serially transplanted into naïve nude mice (n=4; *p<0.05). (G) Representative images of invaded cells (upper panel). Percentage of cells that transmigrated through Matrigel following stimulation with NODAL, ACTIVIN or TGF-ß1 (lower panel; n=3; *p<0.05). (H) RTqPCR quantification of mCHERRY mRNA copies/μg of total RNA in fresh liver homogenates from NSG mice 10 weeks after intrasplenic injection of 5x10⁴ miR-Ctrl or miR-17-92 mCherry-labelled cells (left panel; n=4; *p<0.05) and in situ hybridisation for ALU probe and immunohistochemistry for CK-19 in explanted FFPE livers (right panel).
Figure 5 miR-17-92 targets NODAL/ACTIVIN/TGF-β signalling. (A) Graphic representation of predicted targets of the miR-17-92 cluster. (B) Flow cytometry analysis for ALK4 cell surface expression before and 96 h after treatment with doxycycline 2μg/ml. (C) RTqPCR analysis of miR-17-92 target genes after 72 h of treatment with doxycycline. Data are normalised for ß-Actin expression (n=3; *p<0.05). (D) Western blot analysis of cell cycle proteins p21 and p57, pSMAD2 and TBX3. (E) The complete 3' UTR of ALK4 and TBX3 genes were cloned into the GLuc Dual-luciferase reporter vector and cotransfected with miR-17-92 or miR-Ctrl mimics (n=3; *p<0.05). Luciferase activity was measured and normalised to Renilla luciferase activity (n=4; *p<0.05). (F) Luciferase activity of pCAGA12-luc SMAD4 reporter after stimulation with NODAL, ACTIVIN and TGF-β1 in cells overexpressing miR-17-92 versus control cells. (G) RTqPCR analysis of p21 and TBX3 mRNA expression (upper panel) and western blot analysis for pSMAD2, p21 and GAPDH (lower panel) after stimulation with TGF-β1, NODAL and ACTIVIN in cells overexpressing miR-17-92 versus control cells.
To further show a direct interaction between miR-17-92 members and their targets, we assessed the ability of the cluster members to interact with the 3′ UTR of Alk4 and Tbx3 using luciferase reporter constructs. The complete 3′ UTR of the Alk4 or Tbx3 gene were cloned into the GLuc Dual-luciferase reporter vector and CSCs were cotransfected with GLuc vectors containing the 3′ UTR of Alk4 or Tbx3 and miR-17-92 mimics. As expected, we found significantly lower luciferase expression in miR-17-92 CSCs (figure 5E). To functionally validate SMAD4 as a direct target of miR-17-92, we also used a pCAGA12-luciferase SMAD4 reporter. After stimulation with TGF-β1, NODAL or ACTIVIN, we observed an increase in luciferase expression in miR-Ctrl cells, while in cells overexpressing miR-17-92 the effect was significantly diminished, indicating that SMAD4 is strongly inhibited by miR-17-92 (figure 5F) and suggesting that elevated miR-17-92 levels in bulk PDAC tumour cells could contribute to loss of SMAD4 expression in bulk PDAC samples.28 As it has been reported that TGF-β1-mediated cancer cell migration and invasion is dependent on p21,29 we stimulated cells with TGF-β1, NODAL or ACTIVIN to evaluate the induction of p21, Tbx3 and pSMAD2. In control cells, we observed increased expression of p21, Tbx3 and pSMAD2, while in cells overexpressing miR-17-92, this effect was abrogated (figure 5G).

Knockdown of p21 inhibits CSC phenotypes including chemoresistance

The results presented above suggested that the targets of the miR-17-92 cluster are essential for CSCs. While we have shown previously that the miR-17-92 target Alk4 is crucial for self-renewal of CSCs, we therefore focused on p21 as it was specifically downregulated in chemoresistant CSCs (figure 2A). Knockdown of p21 using short-hairpin RNAs (sh-p21) (figure 6A) resulted in reduced sphere formation capacity during serial passaging (figure 6B), even though sh-p21 cells showed increased overall proliferation as determined by cell cycle analysis (figure 6C). As these in vitro data suggest an important role for p21 in CSCs biology, we next validated our findings in vivo. Limiting dilution assays using sh-scramble and sh-p21 CSCs revealed significantly reduced in vivo tumorigenicity, particularly when low numbers of cells were injected (figure 6D). Moreover, sh-p21 cells lost their invasive capacity (see online supplementary figure S6A) and became chemoresistant to gemcitabine (figure 6E). Thus, by merely silencing p21, one of the many targets of the miR-17-92 cluster, we were able to mimic, at least partially, the phenotypes of miR-17-92 CSCs.

Knockdown of Tbx3 inhibits CSC phenotypes

Next, we studied the role of Tbx3 in CSCs based on its essential role in embryogenesis and stem cell function30 as well as its implication in oncogenic processes.31-33 Indeed, Tbx3 was consistently upregulated in sphere-derived CSCs at the mRNA (see online supplementary figure S6B) and protein levels (figure 6F, left panel). Consistently, Tbx3 was significantly increased in CSCs defined as CD133+ (see online supplementary figure S6C) or ALK4+ (see online supplementary figure S6D), and subsequent Tbx3 knockdown (figure 6F, right panel) resulted in a significant reduction of CSC surface markers (figure 6G) and impaired sphere formation capacity (figure 6H). Very recently, Tbx3 was identified as a TGF-β1 target with a dual function: inhibition of proliferation and promotion of the migration of breast epithelial cells.34 Indeed, silencing of Tbx3 in CSCs also abrogated their invasive capacity, specifically when stimulated with NODAL, ACTIVIN or TGF-β1 (see online supplementary figure S6E). Thus, like p21, Tbx3 also represents a crucial factor through which the miR-17-92 cluster negatively regulates CSC phenotypes.

Targeting quiescent CSCs as a novel therapeutic approach for PDAC

Finally, we aimed to provide proof of concept for the translational relevance of our findings and performed in vivo therapeutic intervention studies by induced overexpression of miR-17-92 in established PDAC models using a doxycycline-switchable system. Once tumours had formed (∼100 mm3), doxycycline was administrated to induce miR-17-92 expression. Some mice also received gemcitabine (biweekly 125 mg/kg intraperitoneally) from day 14 to day 63, to mimic standard of care. No significant differences were observed between miR-Ctrl and miR-17-92 tumours with respect to bulk tumour growth, which was expected based on the extensive proliferative capacity of bulk tumour cells. Intriguingly, however, miR-17-92 tumours were significantly more sensitive to gemcitabine (see figure 7A and online supplementary figure S7A) or Abraxane (see online supplementary figure S7B). Weight assessment (figure 7B) and flow cytometry analysis revealed a significant decrease in CSC content for miR-17-92 tumours treated with gemcitabine (figure 7C). Consistently, limiting dilution tumourigenicity assays showed reduced in vivo tumourigenicity for cells overexpressing miR-17-92 alone and additionally treated with gemcitabine, indicating that high levels of miR17-92 forced CSCs into a more differentiated and proliferative state, reducing their self-renewal capacity in vivo and at the same time sensitising them to gemcitabine (figure 7D).

CONCLUSION/DISCUSSION

Pancreatic cancers contain a rare population of undifferentiated ‘stem-like’ cells that are highly tumourigenic and give rise to more differentiated progenies.3 6 Mechanistically, these cells have activated pathways distinct from their non-differentiated counterparts, including activated NODAL/ACTIVIN signalling, which we have previously identified as an essential regulator of CSC ‘stemness’.16 As CSCs and their more differentiated progenies share the same genetic background, we hypothesised that the apparent mechanistic differences that exist between CSCs and non-CSCs are related to a unique epigenetic signature. As such, we aimed to better characterise the epigenetic regulatory machinery of pancreatic CSCs using complementary approaches. Intriguingly, we were able to identify a specific and common miRNA signature present in treatment-naïve CSCs and gemcitabine-resistant CSCs isolated from a representative set of PDXs.

Specifically, we found the miR-17-92 cluster, composed of six members miR-17, miR-18a, miR-19a, miR-19b, miR-20a and miR-92a, to be markedly suppressed in pancreatic CSCs as compared with their more differentiated and chemosensitive counterparts. Interestingly, the miR-17-92 cluster has been validated as an oncogenic regulator and at the same time as a tumour suppressive regulator. This dual role can be explained, in part, by the spectrum and diversity of the miRNAs targeted by this cluster and the tumour and/or cellular context. While miR-17-92 has been shown to serve as an oncogene in some human cancers,35 36 loss of heterozygosity at 13q12-q13 has also been linked to accelerated tumour progression and poor outcome in breast cancer, squamous cell carcinoma of the larynx, retinoblastoma, hepatocellular carcinoma and nasopharyngeal carcinoma,37 38 and deletion of the miR-17-92 cluster has been observed in a subset of patients with ovarian cancer,
Figure 6 Knockdown of p21 or TBX3 inhibits cancer stem cell (CSC) phenotypes. (A–H) CSCs were stably infected with lentiviruses expressing a scrambled control shRNA (Ctrl), an shRNA against p21 (sh-p21) or an shRNA against TBX3 (sh-TBX3). (A) Western blot analysis of p21 in infected cells. ADU, arbitrary densitometric unit. (B) Serial sphere formation capacity of sh-p21-infected pancreatic ductal adenocarcinoma (PDAC) cells (n=3; *p<0.05). (C) Cell cycle analysis using Ki67 staining (n=3; *p<0.05). (D) Limiting dilution tumourigenicity analysis of sh-p21-infected 185 cells. Freq=CSC frequency (*p<0.05). (E) Chemoresistance to gemcitabine as determined with AnnexinV/DAPI staining after 7 days treatment (n=3; *p<0.05). (F) Comparative western blot analysis of TBX3 protein levels in adherent (Adh) and sphere (Sph) from several primary PDAC cultures and densitometric quantification (left panel). Western blot analysis for TBX3 in cells expressing sh-Tbx3 (sh1 and sh2) and densitometric quantification (right panel). (G) Flow cytometry analysis for CSC surface markers CD133 and CXCR4 (n=3; *p<0.05). (H) Sphere formation capacity of sh-TBX3-infected PDAC cells (n=3; *p<0.05).
breast cancer and melanoma. Moreover, the role of the miR-17-92 cluster as a tumour suppressor has been demonstrated in breast cancer cells, in GI stromal tumours and in oral squamous carcinoma. Thus, the duality of this cluster reflects the complexities of cancer progression as well as the intricacies of the regulation network of miRNAs and their targets in a tumour and cell type-dependent manner.

Our data now demonstrate that targeted inhibition of miR-17-92 in pancreatic non-CSCs equipped these cells with features that are inherently restricted to bona fide CSCs, such as upregulation of CD133, increased sphere formation capacity, reduced proliferation and subsequent in vitro chemoresistance, and more importantly, increased in vivo tumourigenicity and in vivo resistance to chemotherapy. In contrast, overexpression of miR-17-92 in CSCs resulted in loss of stem-like features, including reduced self-renewal (ie, sphere formation capacity), and decreased expression of CSC surface markers, but also increased proliferation. The latter was most intriguing as it resulted in exhaustion of normally slow-cycling CSCs, which was reflected in decreased in vivo tumourigenicity during serial passaging and increased sensitivity to gemcitabine and Abraxane, respectively. Thus, our data demonstrate that suppression of miR-17-92 is crucial for maintaining the stemness phenotype in CSCs, while the apparent overexpression in non-CSCs equips these cells with extensive, albeit not indefinite, proliferative capacity.

Several members of the miR-17-92 cluster have been shown to target diverse pathways, including TGF-β and HIF-1α signalling, but their role in the regulation of pancreatic cancer and specifically of pancreatic CSCs remained to be determined. Intriguingly, we were able to identify several targets clustering around pathways that have been previously associated with CSCs regulation and ‘stemness’ (eg, NODAL/ACTIVIN pathway and cell cycle regulators). We found miR-18a to regulate SMAD2 and SMAD4, two key components of the NODAL/ACTIVIN signalling cascade. miR-17 and miR-20a targeted a wider range of genes including TGFBR2, ALK4, SMAD4, as well p21 and TBX3, all of which are again linked to NODAL/ACTIVIN/TGF-β signalling and cell cycle regulation. Finally, miR-92a was found to also target TBX3 as well as p57. The sum of these data therefore suggests that miR-17-92 specifically dampens NODAL/ACTIVIN signalling in a multifaceted way by acting upstream and downstream of pSMAD2/SMAD4.

As the biological relevance of targeting NODAL/ACTIVIN and ALK4 in CSCs has already been demonstrated by our laboratory, herein we focused our efforts on the other less characteristic miR-17-92 targets p21 and TBX3. For p21, we...
observed that this cell cycle regulator was overexpressed in chemoresistant CSCs suggesting an important role for p21 in controlling CSC proliferation. Indeed, there is strong evidence from murine models of normal haematopoietic and leukemic stem cells that p21 is an important regulator of self-renewal. In the absence of p21, normal haematopoietic stem cells as well as transformed leukemic stem cells functionally exhaust over time.23 24 Our data now also support a role for p21 in the prevention of pancreatic CSC exhaustion through cell cycle restriction. Inhibiting p21 in CSGs resulted in impaired self-renewal and chemoresistance, the accumulation of DNA damage as evidenced by increased gH2AX foci and their subsequent elimination/dysfunction likely via mitotic chaos.

TBX3 is a transcription factor that belongs to the T-box gene family and contains a conserved DNA-binding domain called the T-box.25 26 TBX3 plays an important role in embryonic development, cell cycle regulation and cancer progression.27 33 For example, overexpressing TBX3 in non-tumorigenic early stage melanoma cells promoted tumour formation and invasion. Furthermore, it has been shown that TBX3 functions as a reciprocal switch between substrate-dependent cell proliferation and tumour invasion.33 TBX3 also plays a pivotal role in TGF-β1-mediated antiproliferation and promotion of immune response in the regulation of NODAL signalling in embryonic stem cells.34 Here we now show that TBX3 is upregulated in CSCs and its knockdown negatively affects CSC phenotypes via TGF-β1-dependent and NODAL-dependent mechanisms. Thus, our data demonstrate the importance of TBX3 in the regulation of pancreatic CSCs self-renewal and metastasis via regulation of TGF-β1 and NODAL signalling.

In summary, our study has identified the miR-17-92 cluster as a previously unknown negative master regulator of pancreatic CSCs. While we are still investigating why this cluster is differentially expressed in CSGs versus non-CSGs, we have observed that MYC, a known regulator of the miR-17-92 cluster,35 36 43 is consistently downregulated in pancreatic CSCs. More importantly, we demonstrate, for the first time, that the miR-17-92 cluster regulates CSCs via targeting AKL4, p21 and TBX3. Overexpression of miR-17-92 led to abrogation of CSC phenotypes and eventual loss of in vivo tumorigenicity, whereas suppression of miR-17-92 contributed to PDAC aggressiveness including invasiveness. In addition, it is important to note that the simultaneous targeting of the different components of the NODAL/AKTIVIN signalling cascade as well as its downstream effectors through multiple miRNAs of the miR-17-92 cluster allows for a very tight control of this transcriptional programme. Thus, from a clinical point of view, targeting pancreatic CSCs using the multifaceted effects of miR-17-92 on NODAL/AKTIVIN signalling could be a promising and highly specific therapeutic approach, as it would result in reduced expression of AKL4, and induce direct miR-17-92-mediated repression of NODAL/AKTIVIN responsive genes. The latter would avoid the bias of the SMAD4 status as Smad4 is mutated in about 50% of pancreatic tumours,44 even though these tumours still maintain active NODAL/AKTIVIN signalling as a key regulator of their self-renewal capacity. Indeed, the plasmid-based production of modified miRNA, which also allows for the generation of polycistronic constructs such as miR-17-92,45 could represent an important next step to further evaluate this novel therapeutic concept in preclinical models of PDAC.

 Contributors MC developed the study concept, acquired, analysed and interpreted data as well as drafted the manuscript; YS-R, SMT, IM-L, EL, JD and AA acquired and analysed data; CRV and JCR designed and developed all viruses used in the study; SH performed and analysed the miRNA microarray experiments; MH provided extensively characterised PDAC samples; BSJr developed the study concept, interpreted the data and wrote the manuscript; CH developed the study concept, obtained funding, interpreted the data and wrote the manuscript.

 Funding CH: ERC Advanced Investigator Grant (Pa-CSC 233460), European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No 256974 (EPC-TM-NET) and No 602783 (CAM-Pac), the Subdirección General de Evaluación y Fomento de la Investigación, Fondo de Investigación Sanitaria (PS09/02129 & PI12/02643), and the Programa Nacional de Internacionalización de la I+D, Subprograma: FCIJ 2009 (PPI2009-0105; Ministerio de Economía y Competitividad, Spain). MC: La Caixa Predoctoral Fellowship.

 Competing interests None.

 Patient consent Obtained.

 Ethics approval Instituto de Salud Carlos III, Madrid, Spain.

 Provenance and peer review Not commissioned; externally peer reviewed.

 Data sharing statement No additional unpublished data from the study are available.

 Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

 REFERENCES

 Acknowledgements The authors thank Sonia Alcala for excellent technical assistance and Dr Aristidis Moustakas (Ludwig Cancer Research Centre, Uppsala, Sweden) for providing the pCAGA12-luc SMAD4 reporter.

Contributors MC developed the study concept, acquired, analysed and interpreted data as well as drafted the manuscript; YS-R, SMT, IM-L, EL, JD and AA acquired and analysed data; CRV and JCR designed and developed all viruses used in the study; SH performed and analysed the miRNA microarray experiments; MH provided extensively characterised PDAC samples; BSJr developed the study concept, interpreted the data and wrote the manuscript; CH developed the study concept, obtained funding, interpreted the data and wrote the manuscript.

on May 12, 2022 by guest. Protected by copyright.
Erratum: The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells

Cioffi M, Trabulo SM, Sanchez-Ripoll Y, et al. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut 2015;64:1936-48. Two errors have been corrected in the text. In the paragraph “Knockdown of p21 inhibits CSC phenotypes including chemoresistance”, line 5 has been corrected to “… we therefore focused on p21 as it was specifically upregulated in chemoresistant CSCs (figure 2A)”. In the same paragraph, line 16 has been corrected to “and became chemosensitive to gemcitabine (figure 6E)”.

Gut 2016;65:1224. doi:10.1136/gutjnl-2014-308470corr1

CrossMark
Supplemental Information

The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells

Michele Cioffi¹, Sara M. Trabulo¹, Yolanda Sanchez-Ripoll¹, Irene Miranda-Lorenzo¹, Enza Lonardo¹, Jorge Dorado¹, Catarina Reis Vieira¹,³, Juan Carlos Ramirez³, Manuel Hidalgo², Alexandra Aicher¹, Stephan Hahn⁴, Bruno Sainz, Jr.¹, Christopher Heeschen¹,⁵

1. SUPPLEMENTAL DATA

- Figure S1: Gemcitabine resistant cells are enriched for CSCs, related to Figure 1
- Figure S2: Slow cycling cells possess CSC phenotype, related to Figure 2.
- Figure S3: miR-17-92 downregulation in spheres and in gemcitabine resistant cells, related to Figure 3.
- Figure S4: miR-17-92 overexpression impairs CSC phenotype, related to Figure 4.
- Figure S5: miR-17-92 targets* multiple members of Nodal/TGFb signalling, related to Figure 5.
- Figure S6: Knockdown of p21 or TBX3 inhibits cancer stem cell phenotype, related to Figure 6.
- Figure S7: In vivo overexpression of miR-17-92 reverses quiescence and chemoresistance, related to Figure 7
- Table S1: Table of utilized primer sequences for real-time RT-qPCR
- Table S2: Oligonucleotides used for the production of 5 shRNAs against p21

2. SUPPLEMENTAL EXPERIMENTAL PROCEDURES
1. SUPPLEMENTAL FIGURE LEGENDS

Figure S1 – Gemcitabine resistant cells are enriched for CSCs. (A) Flow cytometry for surface expression of CD133, SSEA1, and CXCR4 in Gemcitabine resistant cells versus control cells. (B) QPCR analysis of pluripotency-associated genes (left panel) and genes related to EMT (right panel). (C) QPCR analysis for expression of TGFB2, ALK4, SMAD2, SMAD4, and TBX3 in gemcitabine resistant cells versus control cells. (D) QPCR analysis for the expression of ABC transporters (ABCC1 and ABCG2) and Gemcitabine transporters (hENT1, hENT2, hCNT1, and hCNT3) in gemcitabine resistant cells versus control cells. Data are normalized for β-Actin expression. (E) Flow cytometry analysis of gemcitabine treated tumors depleted by MACS for mouse CD45 and mouse CD146.

Figure S2 – Slow cycling cells possess CSC phenotype. (A) Flow cytometry for surface expression of CD133, SSEA1, and CXCR4 in PKH26+ and PKH26– cells, respectively (B) Sphere formation capacity of PKH26+ versus PKH26– cells isolated from A6l, 253, and 354 PDAC tumors (n=3; *P<0.05).

Figure S3 – miR-17-92 downregulation in spheres and in gemcitabine resistant cells. (A) QPCR analysis for the expression of miR-17-92 family members in Gemcitabine resistant cells and spheres versus respective control cells. (B) QPCR analysis for the expression of miR-17-92 family members in PKH26+ and PKH26– cells isolated from 185 and 354 PDAC tumors. (C) Western blot analysis for the expression of the cell cycle regulator p21 in adherent cells treated with antagonim-17-92 versus antagonim-Ctrl. (D) *In vivo* tumorigenicity of A6L and 185 treated with antagonim-17-92 versus antagonim-Ctrl.

Figure S4 – miR-17-92 overexpression impairs CSC phenotype. (A) Lentiviral overexpression of miR-17-92 in CSCs. Representative images of GFP expression post infection (upper panel), illustration of the utilized sorting strategy (middle panel), and qPCR analysis for the expression of miR-17-92 family members in GFP sorted cells (lower panel). (B) QPCR analysis for the expression of pluripotency-associated genes in miR-17-92 cells versus miR-Ctrl.
cells. (C) Representative images for β-galactosidase staining in miR-17-92 cells versus miR-Ctrl cells. (D) Percentage of PKH26+ cells over a period of 4 weeks in miR-17-92 cells versus miR-Ctrl. (E) Sphere counts during serial in vivo passaging of miR-17-92 cells versus miR-Ctrl cells. (F) Cell cycle analysis using Ki67 and DAPI of cell freshly isolated cells after serial in vivo passaging. (G) Quantification of migratory activity in the wound-healing assay with stimulation of TGF-β1 or NODAL in the presence or absence of the ALK4,5,7 inhibitor SB 431502.

Figure S5 – miR-17-92 target multiple members of NODAL/TGF-β1 signaling. (A) Sequence alignment of miR-17-92 family members’ seed sequence in TGFBR2 3′ UTR, ALK4 3′ UTR, SMAD2 3′ UTR, SMAD4 3′ UTR, p21 3′ UTR, p57 3′ UTR, and TBX3 3′ UTR. (B) QPCR analysis for the expression of miR-17-92 family members 96h after induction with Doxycycline. (C) RTqPCR analysis of miR-17-92 target genes after 24h of treatment with single antagonirs against each of the six members of the miR-17-92 cluster.

Figure S6 – Knockdown of p21 or TBX3 inhibits cancer stem cell phenotype. (A) Representative images of invaded cells (left panel). Percentage of invading cells (Ctrl versus sh-p21) through Matrigel™ following stimulation with FBS, NODAL or TGF-β1 (right panel). (B) RTqPCR analysis of TBX3 mRNA levels in multiple PDAC sphere cultures (s) compared to their respective adherent controls (n = 3; *p < 0.05). (C) Western blot analysis for the expression of TBX3 in cells sorted for CD133 surface expression (upper panel) and densitometric quantification of the western blot (lower panel). (D) QPCR analysis for the expression of TBX3 in cells sorted for ALK4 surface expression. (E) Percentage of invading cells through Matrigel™ following stimulation with NODAL, ACTIVIN or TGF-β1 (n = 3; *p < 0.05).

Figure S7: In vivo overexpression of miR-17-92 reverses quiescence and chemoresistance. Treatment effects of gemcitabine and abraxaen in miR-17-92 overexpressing cells in established tumors derived from (A) A6L and (B) 185 cells, respectively, in immunocompromised mice. The mean tumor volume is given; n 6 tumors per group. P value was determined by Student t test.
SUPPLEMENTARY MATERIALS & METHODS

Sphere formation assay. Spheres were generated by culturing $\sim2\times10^4$ pancreatic cancer cells in suspension in serum-free DMEM/F12 medium supplemented with B27 (1:50, Invitrogen, Alcobendas, Spain), 20ng/ml bFGF and 50units/ml pen/strep for a total of 7 days, allowing spheres to reach a size of $>75\mu$m. For serial passaging, 7-day-old spheres were harvested using 40µm cell strainers, dissociated into single cells, and then re-cultured for 7 additional days as previously described (Lonardo et al. 2011).

RNA preparation and quantitative real-time PCR. Total RNAs from human primary pancreatic cancer cells and spheres were extracted with TRIzol (Life Technologies Inc.) according to the manufacturer’s instructions. One microgram of total RNA was used for cDNA synthesis with SuperScript II reverse transcriptase (Life Technologies) and random hexamers. Quantitative real-time PCR was performed using SYBR Green PCR master mix (QIAGEN), according to the manufacturer’s instructions. The list of utilized primers is depicted in Table S1.

Microarray analysis of miRNA. Total RNA concentrations extracted with Trizol were measured using a NanoDrop spectrophotometer (NanoDrop Technologies, Wilmington, DE). The miRNA microarray experiments were performed using the Agilent Microarray Platform (Agilent Technology, Foster city, CA) G4471A-025987 miRNA array composed by 866 human miRNAs probes and the Human Gene Expression 4x44K v2 Microarray contain 34,127 Entrez Gene RNAs. 100ng total RNA was hybridized to the miRNA array and for each miRNA, multiple probes were spotted on the array. In addition, multiple spots were included as negative controls. The arrays were scanned using an Agilent Technology G2565BA scanner and the scanned images were processed using the Feature Extraction software package version 9.5 (Agilent Technology). For data processing, we performed a global normalization via quantile normalization for each set of sample pairs and subsequently a pair wise comparison via unpaired t-test and Benjamini Hochberg correction for false discovery rate.
Quantification of mature miRNA levels using quantitative real-time PCR. For miRNA analysis, one microgram of total RNA was reverse-transcribed using the NCode VILO miRNA cDNA synthesis kit according to the manufacturer's instructions (Invitrogen). This step adds a polyadenylate tail to the miRNA population within the total RNA samples. The resulting cDNA was subjected to real-time PCR using SYBR Green ER qPCR Mix (Invitrogen). The Universal qPCR Primer was provided in the VILO kit and the forward primer for miR-17, 18a, 19a, 19b, 20a, 92, Snord95 and Snord44 were purchasing from Qiagen.

Generation of Lentivirus. To stably over-express the miR-17-92 cluster we used lentiviral particles carrying the pre-miR-17-92 cluster in the pcopGFP lentivector (System Biosciences, Mountain View, CA) and pPACK packaging mixture. To produce lentiviral particles carrying a doxycycline-inducible pre-miR-17-92 cluster, a custom lentiviral vector was constructed, with constitutively expressed mCherry and M2rtTA (a reverse doxycycline transactivator), and a custom-designed promoter with the doxycycline operator and a minimal CMV promoter, under which the miR-17-92, amplified by PCR from pLVX-eG2N-1792 (construct previously described), was cloned. Replication-incompetent lentiviral particles were then produced by calcium-phosphate transfection of HEK293T cells using the packaging plasmids pMD.2G (VSV-G) and pPAX2 and the shuttle vector pInd-miR-17-92-mCherry. Six hours post transfection, the medium was refreshed and 48 h later, the medium was collected, cleared by low-speed centrifugation, filtered through 0.45μm pore-size PVDF filters, and stored in aliquots at −80°C. To construct the lentiviral vectors carrying different shRNAs targeting p21, a forward and a reverse oligonucleotide for each shRNA was designed, in order to reconstitute the shRNAs through a hybridization PCR and to introduce restriction sites at the 5’ and 3’ ends of the shRNA for subsequent cloning. The shRNA oligonucleotides are listed in Table S2. The shRNAs were cloned into the lentiviral vector pLVX-shRNA2 from Clontech, under the control of the U6 promoter and with a zsGreen fluorescent protein reporter. Replication-incompetent lentiviral
particles were produced as described above. Tbx3 lentiviral vector and empty vector control were obtained from Origene.

Western Blot Analysis. Cells were harvested in RIPA buffer (Sigma) supplemented with a protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN). 50µg of protein was resolved by SDS-PAGE and transferred to PVDF membranes (Amersham Pharmacia, Piscataway, NJ). Membranes were sequentially blocked with 1X TBS containing 5% BSA (w/v), 1% chicken albumin (w/v) and 0.1% Tween20 (v/v), incubated with a 1:1,000 dilution of antibodies against p21 (2947), p27 (3688), p57 (2557), Cyclin D1 (2926), pSMAD2 (3108) from Cell Signaling or GAPDH (ab8245), Tbx3 (ab58264), Nanog (ab14959) from Abcam overnight at 4°C, washed 3 times with 1X PBS containing 0.05% Tween20 (v/v), incubated with horseradish peroxidase-conjugated goat anti-rat or goat anti-mouse antibody (Sigma), and washed again to remove unbound antibody. Bound antibody complexes were detected with SuperSignal chemiluminescent substrate (Amersham, Barcelona, Spain).

Flow cytometry. To identify pancreatic CSCs, the following antibodies were used: anti-CD133/1-APC or PE; (Miltenyi, Bergisch-Gladbach, Germany), anti-CXCR4-APC, SSEA-1-APC (both from Beckton Dickinson [BD], Heidelberg, Germany), anti-Alk4, (Cell Signaling Technology, Inc.), or appropriate isotype-matched control antibodies. DAPI was used for exclusion of dead cells (eBiosciences, San Diego, CA). Samples were analyzed by flow cytometry using a FACS Canto II (BD) and data were analyzed with FlowJo 9.2 software (Ashland, OR).

Wound-healing assay. Confluent cultures of primary cancer cells seeded in a 6-well plates were scratched using a 1 ml pipette tip after overnight starvation. Cells were washed twice with PBS to remove cell debris and then incubated at 37°C with serum-free media in the presence or absence of 300ng/ml recombinant human NODAL, 100ng/ml ACTIVIN, or 10 ng/ml TGF-β1. Migration was evaluated 24h later by calculating the average size of the wound determined by measuring the size of the wound at three locations (n = 3 wounds per cell/treatment).
Invasion assay. Invasion assays were performed using modified Boyden chambers filled with Matrigel™ (BioCoat, BD Biosciences, Heidelberg, Germany). Adherent and sphere culture derived cells were used for these experiments. Cells were added to the Matrigel™-coated inserts and 750µL of serum-free medium with 300ng/ml recombinant human NODAL, 100ng/ml ACTIVN, and 10ng/ml TGF-β1 was added to the lower chamber. The assay chambers were incubated for 24h at 37°C. Invasive cells were fixed in 4% PFA and stained with DAPI using Prolong Gold (Invitrogen). The number of invaded cells was compared to control.

Cell-cycle analysis. Cells were trypsinized, washed in PBS, centrifuged, and pellets were fixed in 200 µl of 70% ethanol and stored at -20°C until use. Cells were centrifuged and pellets resuspended in 200 µl of PBS with 10 µg/mL of RNAse A. Cells were incubated for 1 hour at 37°C prior to resuspension in DAPI. For the identification of G0 quiescent population, cells were fixed in 100% ethanol at -20°C overnight, washed with PBS twice and stained with Ki67 (BD, Heidelberg, Germany) for 30min at room temperature, followed by an additional wash with PBS and staining with DAPI. Cell-cycle analysis was carried out by flow cytometry (CANTO II). Data were analyzed by FlowJO software.

PKH26 assay. Human primary pancreatic cancer cells were labeled with PKH26 red fluorescent cell membrane dye (Sigma) according to the manufacturer’s instructions. Every 7 days for a total of 4 weeks, cells were harvested and PKH26+ cells were determined by flow cytometry.

Senescence studies. Expression of pH-dependent senescence associated beta-galactosidase (SA-beta-gal) activity was analyzed in primary pancreatic cancer cells using the SA-beta-gal staining kit (Cell Signaling Technology, Boston, MA).

Apoptosis assay. Cancer cells and CSCs were plated at 3x10^5 cells/well in a 6-well tissue culture plate and cultured in presence of gemcitabine (100ng/ml) for 7 days. Attached and floating cells were collected, resuspended and stained with Annexin V (550474; BD Bioscience) and after incubation with Annexin V binding buffer (556454; BD Pharmingen) cells were
incubated with DAPI. Annexin V+ cells were determined by cytometry.

Plasmid construct and transfection. The pCAGA12-luc SMAD4 reporter plasmid is a synthetic SMAD responsive luciferase reporter vector that was generated by cloning 12xCAGA (consensus SMAD binding element) into the pGL3 basic plasmid (Promega) (Dennler et al., 1998; Savary et al., 2013). Human primary pancreatic cells were plated in 24-well tissue culture plates and co-transfected with pCAGA12-luc SMAD4 reporter and control Renilla plasmid using Lipofectamine 2000. Forty-eight hours post transfection, Gaussian luciferase and Renilla luciferase were measured using a Dual Luciferase assay kit (Promega). Luciferase activity is plotted as a percentage of the activity measured in control transfected cultures.

3’ UTR luciferase reporter assays. The GLuc-ALK4-3’-UTR clone and GLuc-Tbx3-3’-UTR clone (GeneCopoeia, Labomics, Nivells, Belgium) and a control 3’UTR-reporter construct were transfected in human embryonic kidney (HEK) 293T cells seeded in presence of 50 nmol/L of miR-17-92 precursor or negative control. Gaussian luciferase and alkaline phosphatase activities were measured by luminescence in conditioned medium 48 hours after transfection using Dual-Light® detection system (Genecopoeia). Luciferase activity was plotted as a percentage of the activity measured in control-transfected cultures.

Antagomirs. Knockdown of miR-17-92 was achieved in vitrō and in vivō by administering a miR-17, -18a, -19a, -19b, -20a, -92 antagomir mix or scrambled control, which were chemically synthesized as 2-O-methyloligoribonucleotides by BioSpring (Frankfurt, Germany). The antagomirs are labeled with Cy3 and contain cholesterol, which facilitates both their tracking and entry into cells, respectively.

Immunohistochemistry. For histopathological analysis, FFPE blocks were serially sectioned (3μm thick) and stained with hematoxylin and eosin (H&E). Additional serial sections were used for in situ hybridization (ISH) with ALU probe or immunohistochemical (IHC) analysis for CYTOKERATIN-19. For ISH, antigens were visualized using a DAKO ISH
Detection systems, and for IHC, antigens were visualized using 3,3-diaminobenzidine tetrahydrochloride plus (DAB+). Counterstaining was performed with hematoxylin. Histological quantification of digitalized slides was performed using Pannoramic Viewer (3DHistech, Budapest, Hungary).

Statistical analyses. Results for continuous variables are presented as means ± standard deviation (SD) unless stated otherwise. Treatment groups were compared with the independent samples t test. Pair-wise multiple comparisons were performed with the one-way ANOVA (two-sided) with Bonferroni adjustment. P values <0.05 were considered statistically significant. All analyses were performed using SPSS 22.0 (SPSS Inc., Chicago, Illinois).

References

Figure S1 – Gemcitabine resistant cells are enriched for CSCs. (A) Flow cytometry for surface expression of CD133, SSEA1, and CXCR4 in Gemcitabine resistant cells versus control cells. (B) QPCR analysis of pluripotency-associated genes (left panel) and genes related to EMT (right panel). (C) QPCR analysis for expression of TGFR2, ALK4, SMAD2, SMAD4, and TBX3 in gemcitabine resistant cells versus control cells. (D) QPCR analysis for the expression of ABC transporters (ABCC1 and ABCG2) and Gemcitabine transporters (hENT1, hENT2, hCNT1, and hCNT3) in gemcitabine resistant cells versus control cells. Data are normalized for ß-Actin expression. (E) Flow cytometry analysis of gemcitabine treated tumors depleted by MACS for mouse CD45 and mouse CD146.
Figure S2 – Slow cycling cells possess CSC phenotype. (A) Flow cytometry for surface expression of CD133, SSEA1, and CXCR4 in PKH26+ and PKH26− cells, respectively (B) Sphere formation capacity of PKH26+ versus PKH26− cells isolated from A6l, 253, and 354 PDAC tumors (n=3; *P<0.05).
Figure S3 – miR-17-92 downregulation in spheres and in gemcitabine resistant cells. (A) QPCR analysis for the expression of miR-17-92 family members in Gemcitabine resistant cells and spheres versus respective control cells. (B) QPCR analysis for the expression of miR-17-92 family members in PKH26+ and PKH26– cells isolated from 185 and 354 PDAC tumors. (C) Western blot analysis for the expression of the cell cycle regulator p21 in adherent cells treated with antagonim-17-92 versus antagonim-Ctrl. (D) In vivo tumorigenicity of A6L and 185 treated with antagonim-17-92 versus antagonim-Ctrl.
Figure S4 – miR-17-92 overexpression impairs CSC phenotype. (A) Lentiviral overexpression of miR-17-92 in CSCs. Representative images of GFP expression post infection (upper panel), illustration of the utilized sorting strategy (middle panel), and qPCR analysis for the expression of miR-17-92 family members in GFP sorted cells (lower panel). (B) QPCR analysis for the expression of pluripotency-associated genes in miR-17-92 cells versus miR-ctrl cells. (C) Representative images for β-galactosidase staining in miR-17-92 cells versus miR-ctrl cells. (D) Percentage of PKH26+ cells over a period of 4 weeks in miR-17-92 cells versus miR-ctrl. (E) Sphere counts during serial in vivo passaging of miR-17-92 cells versus miR-ctrl cells. (F) Cell cycle analysis using Ki67 and DAPI of cell freshly isolated cells after serial in vivo passaging. (G) Quantification of migratory activity in the wound-healing assay with stimulation of TGF-β1 or NODAL in the presence or absence of the ALK4,5,7 inhibitor SB 431502.
miR-17-92 target multiple members of NODAL/TGF-β1 signaling. (A) Sequence alignment of miR-17-92 family members’ seed sequence in TGFBR2 3′ UTR, ALK4 3′ UTR, SMAD2 3′ UTR, SMAD4 3′ UTR, p21 3′ UTR, p57 3′ UTR, and TBX3 3′ UTR. (B) QPCR analysis for the expression of miR-17-92 family members 96h after induction with Doxycycline. (C) RTqPCR analysis of miR-17-92 target genes after 24h of treatment with single antagomirs against each of the six members of the miR-17-92 cluster.
Figure S6 – Knockdown of p21 or TBX3 inhibits cancer stem cell phenotype. (A) Representative images of invaded cells (left panel). Percentage of invading cells (Ctrl versus sh-p21) through Matrigel following stimulation with FBS, NODAL or TGF-ß1 (right panel). (B) RTqPCR analysis of TBX3 mRNA levels in multiple PDAC sphere cultures (s) compared to their respective adherent controls (n = 3; *p < 0.05). (C) Western blot analysis for the expression of TBX3 in cells sorted for CD133 surface expression (upper panel) and densitometric quantification of the western blot (lower panel). (D) QPCR analysis for the expression of TBX3 in cells sorted for ALK4 surface expression. (E) Percentage of invading cells through Matrigel following stimulation with NODAL, ACTIVIN or TGF-ß1 (n = 3; *p < 0.05).
Figure S7: *In vivo* overexpression of miR-17-92 reverses quiescence and chemoresistance. Treatment effects of gemcitabine and abraxane in miR-17-92 overexpressing cells in established tumors derived from (A) A6L and (B) 185 cells, respectively, in immunocompromised mice. The mean tumor volume is given; n 6 tumors per group. P value was determined by Student t test.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sense</th>
<th>Primer antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td>NANOG</td>
<td>TGAACCTCAGCTACAACAGGTG</td>
<td>AACTGCATGCGAGACTGCGAGAG</td>
</tr>
<tr>
<td>KLF4</td>
<td>ACCCACACAGGTGAAGAAAC</td>
<td>ATGTGAAGCGAGGAGTC</td>
</tr>
<tr>
<td>SOX2</td>
<td>AGAACCCCAAGATGCAAAAC</td>
<td>CGGGGCGGTGATTTTAAATC</td>
</tr>
<tr>
<td>OCT3/4</td>
<td>CTTGCTGAGGAAGTTGGAGAGAA</td>
<td>CTGCAGTGGGTGTTTGCGGCA</td>
</tr>
<tr>
<td>NODAL</td>
<td>AGCATGTGTGAGGAGGTGAC</td>
<td>CTGCGAGAGGTTGAGAGTAG</td>
</tr>
<tr>
<td>ACTIVIN</td>
<td>AAGCTTACGTGGGCAAAG</td>
<td>AATCTGGAATGCGAGGTCT</td>
</tr>
<tr>
<td>TGFB1</td>
<td>CAGAAATTCCCGGCGATACCT</td>
<td>CGTGTAGTGCGATCTCGAGT</td>
</tr>
<tr>
<td>SMAD2</td>
<td>CCGAGCAGGAAATTGAGCCCA</td>
<td>GTTCTGCTGAGAGCTGCTGTC</td>
</tr>
<tr>
<td>SMAD4</td>
<td>CAGCACCACCCGGCTATGCC</td>
<td>TGGAACACAAATACGAGGAGAGG</td>
</tr>
<tr>
<td>ALK4</td>
<td>GAGAGCCTCTGTGTCTGGGAG</td>
<td>TGCAACAGGATCGACCTGAG</td>
</tr>
<tr>
<td>TGFBRII</td>
<td>CACACCDAGGGGATCCCA</td>
<td>TCGTGCTCCAGACGACTCA</td>
</tr>
<tr>
<td>TBX3</td>
<td>CGGGAAGCGGAATGTTGCCCTCCA</td>
<td>GGTGGGGCTTACCACGCaCC</td>
</tr>
<tr>
<td>CD133</td>
<td>CAGAGTACAACGCCAAACCA</td>
<td>AAATCAAGATGAGGTCAGIC</td>
</tr>
<tr>
<td>MCHERRY</td>
<td>GCACCTCAAACGTCACCAC</td>
<td>GCCTCGTGACTGTTGCCAGA</td>
</tr>
<tr>
<td>CDKN1A</td>
<td>CAGAGCTGCTGCTGGTACCTG</td>
<td>AAGAGATGCGCGGCTTTT</td>
</tr>
<tr>
<td>CDKN1B</td>
<td>TAATGGGGCTCCGCGCTAAC</td>
<td>TTGCGATGCCCTGCTGCTTATTC</td>
</tr>
<tr>
<td>CDKN1C</td>
<td>TCTGATCTCCGATTCTCGGC</td>
<td>TGCTGCTAGTGAAAGGTGTC</td>
</tr>
<tr>
<td>CYCLIN D1</td>
<td>CGGCTGCTCTAAGATGAGGA</td>
<td>CGGTGGAAGTGACAGCTT</td>
</tr>
<tr>
<td>HCNT1</td>
<td>GGTTGGCTGCCCTGGGATT</td>
<td>AAGCAGAAGAGCTGAGCCCTCT</td>
</tr>
<tr>
<td>HCNT3</td>
<td>CTTCTGGAAGATACAGATGCT</td>
<td>CGGCCAGAATCTAAATGCACAA</td>
</tr>
<tr>
<td>HENT1</td>
<td>CTTCTAGCCCAACGATAAGAA</td>
<td>CTCAACAGTGGCAGGGTGAA</td>
</tr>
<tr>
<td>HENT2</td>
<td>CTCTCAACTCTAGCCCAGAA</td>
<td>CGTGGATGCTGGACTTGAGCT</td>
</tr>
<tr>
<td>ABCG1</td>
<td>GGAATACAGAAGGCCGACTCT</td>
<td>TTTTGGTTTGTGAGAGGTGTC</td>
</tr>
<tr>
<td>ABCG2</td>
<td>TCAATGATTGGAGAAGCCAAGGC</td>
<td>TGAGATTGACCACAGACCTGA</td>
</tr>
<tr>
<td>B-ACTIN</td>
<td>GCGAGCACAGAAGCGCTGCTT</td>
<td>CATCATGAGGGCTGCGGCG</td>
</tr>
</tbody>
</table>
Table S2. Oligonucleotides for the production of 5 shRNAs against p21

<table>
<thead>
<tr>
<th>shRNA</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>p21.1 FW</td>
<td>gatccCGGCTGATCTTCTCCAAGAGGAACTCGAGTTCGAGAAGATCGACTTTTTTgggtacc</td>
</tr>
<tr>
<td>p21.1 RV</td>
<td>aattcgggtaccCAAAAAGCTGATCTTCTCCAAGAGGAACTCGAGTTCGAGAAGATCGACCGGG</td>
</tr>
<tr>
<td>p21.2 FW</td>
<td>gatccCGGCTGATCTTCTCCAAGAGGAACTCGAGTTCGAGAAGATCGACTTTTTTgggtacc</td>
</tr>
<tr>
<td>p21.2 RV</td>
<td>aattcgggtaccCAAAAAGCTGATCTTCTCCAAGAGGAACTCGAGTTCGAGAAGATCGACCGGG</td>
</tr>
<tr>
<td>p21.3 FW</td>
<td>gatccCGGACACCACTGGAGGGTGACTCTCGAGAAGTCACTCCCTCCAGTGGTGTCTTTTTTgggtacc</td>
</tr>
<tr>
<td>p21.3 RV</td>
<td>aattcgggtaccCAAAAAGACACCACTGGAGGGTGACTCTCGAGAAGTCACTCCCTCCAGTGGTGTCCCGG</td>
</tr>
<tr>
<td>p21.4 FW</td>
<td>gatccCGGCCTGGAGGTGAAGTCACTCTCTGAGATTAGCGCATCACAGTGGTCTTTTTTgggtacc</td>
</tr>
<tr>
<td>p21.4 RV</td>
<td>aattcgggtaccCAAAAACCGCCTGGAGGTGAAGTCACTCTCTGAGATTAGCGCATCACAGTGGGGCCGG</td>
</tr>
<tr>
<td>p21.5 FW</td>
<td>gatccCGGCTCAGTGGTCTCGAGACACCACTGAGGAAGATGAACAGGTACAGAAGTCTTTTTTgggtacc</td>
</tr>
<tr>
<td>p21.5 RV</td>
<td>aattcgggtaccCAAAAAGTCAGTGGTCTCGAGACACCACTGAGGAAGATGAACAGGTACAGAAGTCTTTT</td>
</tr>
</tbody>
</table>

Note: Each sequence is designed to be used with the corresponding sense and antisense strands to form a double-stranded RNA that can be processed into shRNA by Dicer.