
















Using this novel system, we demonstrated that wild-type H.
pylori, but not an isogenic cagA� mutant, significantly increases
proliferation and that this is dependent on β-catenin signalling,
supporting a model in which CagA-driven β-catenin activation
leads to enhanced cell production. These findings are consistent
with our previous data in both MKN28 gastric epithelial cells
and a gerbil model demonstrating that H. pylori increases prolif-
eration in a cag-dependent manner, which occurs via activation
of β-catenin.13 The use of gastroids also revealed a new finding
that claudin-7 expression was reduced in infected organoids,
which guided mechanistic in vitro studies implicating β-catenin
as a heretofore undescribed regulator of claudin-7. Of interest, a
previous study using a different mouse model, hypergastrinae-
mic INS-GAS mice, demonstrated that chronic infection with
another Helicobacter species, H felis, led to an increase in
claudin-7 expression within gastric epithelium 6 months post-
challenge.40 However, H felis lacks the cag PAI,41 emphasising
the need to perform long-term studies in rodent models

challenged with Helicobacter strains that harbour a functional
cag island as a means to dissect the collective effects of H.
pylori on claudin-7 expression in vivo.

In addition to host and bacterial constituents, environmental
conditions can also modify the risk for H. pylori-induced car-
cinogenesis, for example, high salt diets, which have been linked
epidemiologically to increased gastric cancer rates,42 accelerate
the development of H. pylori-induced gastric cancer in
rodents.43 Iron deficiency is also associated with an increased
risk for gastric cancer.44 45 H. pylori infection contributes to
iron deficiency,46 and iron depletion can augment the virulence
potential of bacterial pathogens.47–50 We have demonstrated
that CagA, which is required for β-catenin activation,8 9 13 facili-
tates H. pylori colonisation via iron acquisition from polarised
epithelial cells51 and that iron depletion augments assembly of
the cag type IV secretion system and cancer.52 Gastroids offer
enormous potential as an innovative system to dissect these
complex relationships as they can be subjected to different

Figure 6 Helicobacter pyloriinfection
leads to decreased claudin-7 and
increased snail expression in human
gastric epithelial cells in vivo and in
gastroids. (A and B) Claudin-7
expression in human gastric epithelial
cells isolated from gastric biopsies
from uninfected and H. pylori-infected
subjects was assessed by� ow
cytometry analysis. (A) Representative
histogram for claudin-7 in uninfected
andH. pylori-infected cells. (B) Levels
of claudin-7 protein expressed as MFU
determined by� ow cytometry, were
compared between uninfected andH.
pylori-infected samples. (C–E) Snail
expression in human gastric tissue was
assessed by immunostaining in
uninfected (C), and H. pylori-infected
subjects (D) at 200× magni� cation. (E)
A single pathologist, blinded to
treatment groups, assessed and scored
snail immunostaining. Snail IHC score
was determined by assessing the
percentage of snail epithelial cells
multiplied by the intensity of epithelial
snail staining (1–3) in both the
cytoplasm and nucleus of gastric
epithelial cells. Data are expressed as
means+SEM. (F) Representative
staining for snail (green) in uninfected
or H. pylori-infected gastroids; nuclei
are labelled with Hoechst (blue). APC,
adenomatous polyposis coli; MFU,
mean� uorescence units; IF,
immuno� uorescence; IHC,
immunohistochemistry.
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concentrations of dietary elements such as salt or iron, can be
infected with wild-type or isogenic mutant H. pylori strains and
can be generated from wild-type or genetically deficient mice.

In conclusion, we used a novel ex vivo 3D system to show
that H. pylori induces proliferation and that this is dependent
upon the H. pylori virulence factor CagA and β-catenin.
Additionally, H. pylori alter the expression of claudin-7 in
human gastric tissue and in gastric epithelial cells via signalling
pathways that involve β-catenin and snail. Such investigations
will not only improve our understanding of H. pylori-induced
cancer, but will also provide mechanistic insights into other
infection-related malignancies that arise within the context of
inflammation.
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