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Introduction	
Almost	100%	of	all	celiac	disease	cases	carry	either	the	DQ2	or	DQ8	human	leukocyte	antigen	(HLA)	
allele,	making	the	presence	of	DQ2/DQ8	essentially	a	necessary	cause	for	the	disease.	However,	not	all	
with	DQ2/DQ8	develops	the	disease,	i.e.	the	penetrance	is	not	100%,	making	the	presence	of	DQ2	or	
DQ8	alleles	a	necessary,	but	not	sufficient,	cause.	Further,	DQ2	has	a	carrier	frequency	of	about	25%	in	
the	(Swedish)	population,	while	the	carrier	frequency	of	DQ8	is	much	smaller.	In	the	derivations	below,	
no	distinction	between	homo	and	heterozygous	carrier	status	of	DQ2/DQ8	is	made	(i.e.,	only	one	
necessary-cause	allele	is	assumed).	About	4%	of	the	DQ2/DQ8-carriers	develop	the	disease;	meaning	
that	the	penetrance	is	about	4%.	Therefore,	in	the	Swedish	population	we	would	expect	approximately	
1%	to	have	celiac	disease,	however	if	data	is	gathered	from	registers,	as	in	the	current	study,	this	
number	is	expected	to	be	lower	due	to	non-detected	cases.	

Here	we	derive	a	way	to	account	for	HLA	in	analyses	of	twin	data	where	only	disease	status	is	observed.	

Classical	twin	model	for	binary	traits	
The	standard	approach	to	estimating	association	between	twins	in	pairs	in	the	classical	twin	design	for	a	
binary	phenotype	is	called	the	liability-threshold	model.	An	underlying	standard	normally	distributed	
liability	(mean=0,	variance=1)	of	the	disease	is	assumed,	and	a	threshold	is	estimated;	where,	if	an	
individual	have	the	disease,	the	liability	is	assumed	to	be	above	the	threshold,	and	if	the	individual	does	
not	have	the	disease	the	liability	is	assumed	to	be	below	the	threshold.	The	correlation	between	two	
underlying	liability	distributions,	one	for	each	twin	in	a	pair,	is	the	measure	of	association,	and	is	
referred	to	as	the	tetrachoric	correlation.	This	correlation	–	with	separate	estimates	for	for	monozygotic	
(MZ)	and	dizygotic	(DZ)	twin	pairs	–	is	the	basis	for	heritability	calculations.	

To	find	the	likelihood	of	the	correlation	and	threshold;	let	𝑌!" = 1	be	the	event	that	individual	𝑗	in	twin	
pair	𝑖	has	the	disease,	and	𝑌!" = 0	the	event	that	he/she	do	not	have	the	disease.	Further,	let	𝜌	be	the	
tetrachoric	correlation,	𝜏	the	threshold,	and	let	𝑦!" 	be	the	observed	event	for	twin	𝑗	in	pair	𝑖	(=0	or	1).	
The	likelihood	of	the	observed	data	is		

𝑳 𝜌, 𝜏 = Pr 𝑌!! = 𝑦!!,𝑌!! = 𝑦!!|𝜌, 𝜏
!

!

,	 Eq.	1	
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Eq.	2	

	
The	maximum	likelihood	estimates	of	𝜌	and	𝜏	are	found	by	maximizing	𝑳 𝜌, 𝜏 	with	regards	to	the	
parameters.		

Heritability	estimation	is	conducted	by	including	both	the	group	of	MZ	and	DZ	twins	in	a	model	and,	
under	the	assumption	that	MZ	twins	are	genetically	identical	and	DZ	twins	share	50%	of	their	
segregating	alleles	on	average,	and	MZ	and	DZ	twin	pairs	share	environment	to	an	equal	extent,	
incorporating	the	constraints	

	

Here	ℎ!	is	the	(narrow	sense)	heritability,	𝑐!	is	the	shared	environment,	and	𝑒!	is	the	non-shared	
environment.	

Alternative	likelihood	given	necessary	alleles	
The	problem	with	Eq.	1	and	2	is	that	we	are	assuming	that	all	individuals	can	have	the	disease	when,	in	
fact,	only	those	having	the	necessary	cause	are	at	risk	for	developing	the	disease.	To	alleviate	this	
problem	we	may	introduce	information	about	whether	the	twins	in	pairs	have	the	necessary	cause	or	
not.	The	preferred	way	to	include	the	information	would	be	to	measure	the	presence	of	DQ2/DQ8-
alleles	in	the	population;	however	this	is	not	feasible	in	many	studies,	including	our	study	with	over	
100,000	twins.	

We	want	to	estimate	the	likelihood	given	the	necessary	causes,	but	do	not	have	them	observed.	Luckily	
we	may	calculate	probabilities	for	the	distribution	of	necessary	causes,	and	thus	calculate	the	likelihood	
of	the	data.	Let	𝑟	be	the	new	(non-HLA)	correlation	between	the	liabilities	of	disease,	and	𝑡	be	the	new	
threshold,	both	defined	similar	as	above.	Note	that	𝑟	and	𝑡	represent	slightly	different	entities	than	𝜌	
and	𝜏;	they	refer	to	the	correlation	and	threshold	after	the	necessary	cause	has	been	accounted	for.	Let	
𝑋!" = 1	be	the	event	that	individual	𝑗	in	twin	pair	𝑖	have	the	necessary	cause,	and	𝑋!" = 0	be	the	event	
that	he/she	does	not	have	the	necessary	cause.	The	likelihood	may	be	re-written	as	

𝜌!" = ℎ! + 𝑐!, 

𝜌!" =
1
2
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Eq.	3	



	

where	the	last	step	is	due	to	that	the	probability	of	having	the	allele	is	independent	of	the	penetrance	of	
the	disease,	as	well	as	the	correlation,	not	due	to	HLA,	of	disease	between	the	co-twins.	Here	Pr 𝑌!! =
𝑦!!,𝑌!! = 𝑦!!|𝑋!! = 𝑘,𝑋!! = 𝑙, 𝑟, 𝑡 	is	known,	see	eTable	1.	
	

eTable	1:	Probabilities	of	observing	the	data	given	the	distribution	of	necessary	cause	
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Thus,	if	we	derive	Pr 𝑋!! = 𝑘,𝑋!! = 𝑙 ,	which	depends	on	the	distributions	of	alleles	in	the	population,	
we	may	find	the	likelihood.	

Prevalences	of	alleles	and	necessary	cause	
Let	𝑝	be	the	probability	of	an	individual	having	the	necessary	cause	(i.e.,	having	at	least	one	DQ2/DQ8	
allele),	and	let	𝑝∗	be	the	probability	that	an	allele	is	DQ2/DQ8.	Assume	the	probability	of	allele	1	and	
allele	2	being	DQ2/DQ8	to	be	independent	(corresponding	to	no	assortative	mating	and	no	strong	
selection),	then		

𝑝 = Pr 𝑋!! = 1 ∪ 𝑋!! = 1 = Pr 𝑋!! = 1 + Pr 𝑋!! = 1 − Pr 𝑋!! = 1 ∩ 𝑋!! = 1
= 𝑝∗ + 𝑝∗ − 𝑝∗! = 𝑝∗ 2 − 𝑝∗ ⇔ 𝑝∗ = 1 − 1 − 𝑝.	 Eq.	5	

	

For	example,	if	𝑝 = !
!
	then	𝑝∗ = 1 − 1 − !

!
≈ 0.134.	

Inheritance	of	alleles	
Given	known	allele	frequency	in	a	population,	the	probability	of	offspring	having	at	least	one	DQ2/DQ8-
allele	may	be	calculated	(i.e.,	the	probability	of	having	the	necessary	cause).	One	can	use	this	to	
calculate	the	probability	of	two	offspring	(DZ	twins	or	full	sibling	pair)	of	a	parental	pair	having	the	
necessary	cause.	There	are	16	possible	combinations	of	parental	alleles,	see	eTable	2.	An	offspring	will	
inherit	one	of	the	two	alleles	from	each	parent,	thus	four	different	allele	combinations	are	possible	per	
offspring	in	this	specific	locus	when	considering	both	chromosomes.	When	the	probability	of	having	the	
DQ2/DQ8-allele	can	be	assumed	independent	for	each	parent	and	chromosome	(i.e.,	no	assortative	
mating)	we	can	tabulate	the	different	scenarios	as	in	eTable	2.	



eTable	2:	Distribution	of	alleles	in	parents	and	offspring	
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Note:	“●”,	the	necessary	DQ2/DQ8	allele.	“○”,	not	the	necessary	DQ2/DQ8	allele.	“x”,	necessary	cause.	“-”,	not	
necessary	cause.	“Parents”,	distribution	of	alleles	in	parents.	“Children”,	possible	combinations	of	children	having	
the	necessary	cause.	“Probability	of	parents”,	probability	of	specific	distribution	of	alleles	in	parents.		



From	this	a	total	of	6	different	combinations	of	parental	probabilities	and	offspring	frequencies	may	be	
found,	see	eTable	3.	

eTable	3:	Probabilities	of	pairs	having	necessary	cause	as	a	function	of	distribution	of	alleles	in	parents	

Parental	
combination	of	
alleles	

Number	of	
instances	
parental	
combination	
arises	

Probability	
for	parental	
combination	
of	alleles	

Proportion	of	
offspring	pairs	
where	neither	
have	the	
necessary	
cause	

Proportion	of	
offspring	pairs	
where	only	one	
have	necessary	
cause	

Proportion	of	
offspring	pairs	
where	both	
have	necessary	
cause	

No	alleles	 1	 1 − 𝑝∗ !	 1	 0	 0	
One	allele	in	one	
parent	

4	 𝑝∗ 1 − 𝑝∗ !	 1
4
	

1
2
	

1
4
	

Two	alleles	in	one	
parent	

2	 𝑝∗! 1 − 𝑝∗ !	 0	 0	 1	

One	allele	in	each	
parent	

4	 𝑝∗! 1 − 𝑝∗ !	 1
16

	
6
16

	
9
16

	

Two	alleles	in	one	
parent,	one	allele	in	
other	

4	 𝑝∗! 1 − 𝑝∗ 	 0	 0	 1	

Two	alleles	in	both	
parents	

1	 𝑝∗!	 0	 0	 1	

	

The	probabilities	of	observing	concordant	no	necessary	cause,	discordant	necessary	cause,	and	
concordant	necessary	cause	in	MZ	twin	pairs	and	DZ	twin	pairs	(or	any	full	sibling	pairs)	may	be	
calculated.	Note	that	for	MZ	twins,	who	are	genetically	identical,	this	is	simple;	they	follow	the	
distribution	in	the	population	and	will	never	be	discordant	for	the	necessary	cause.	The	distributions	of	
necessary	causes	are	presented	in	eTable	4,	and	are	based	on	the	probabilities	and	frequencies	
presented	in	eTable	3.	



eTable	4:	Probabilities	for	concordance	and	discordance	in	having	necessary	cause	

	 MZ	twin	pairs	 DZ	twin	pairs	
Concordant	
no	necessary	
cause	

Pr 𝑋!! = 0,𝑋!! = 0|𝑀𝑍
= 𝐶00!" = 1 − 𝑝
= 1 − 𝑝∗ !	

Pr 𝑋!! = 0,𝑋!! = 0|𝐷𝑍 = 𝐶00!"
= 1 ⋅ 1 − 𝑝∗ ! ⋅ 1 + 4 ⋅ 𝑝∗ 1 − 𝑝∗ ! ⋅

1
4
+ 4

⋅ 𝑝∗! 1 − 𝑝∗ ! ⋅
1
16

= 1 − 𝑝∗ ! + 𝑝∗ 1 − 𝑝∗ ! +
1
4
⋅ 𝑝∗! 1 − 𝑝∗ !	

Discordant	
necessary	
cause	

Pr 𝑋!! = 0,𝑋!! = 1|𝑀𝑍
= Pr 𝑋!! = 1,𝑋!! = 0|𝑀𝑍
= 𝐶01!" = 0	

Pr 𝑋!! = 0,𝑋!! = 1|𝐷𝑍 = Pr 𝑋!! = 1,𝑋!! = 0|𝐷𝑍
= 𝐶01!"
= 4 ⋅ 𝑝∗ 1 − 𝑝∗ ! ⋅

1
2
+ 4 ⋅ 𝑝∗! 1 − 𝑝∗ ! ⋅

6
16

/2

= 𝑝∗ 1 − 𝑝∗ ! +
3
4
⋅ 𝑝∗! 1 − 𝑝∗ !	

Concordant	
necessary	
cause	

Pr 𝑋!! = 1,𝑋!! = 1|𝑀𝑍
= 𝐶11!" = 𝑝 = 𝑝∗ 2 − 𝑝∗ 	

Pr 𝑋!! = 1,𝑋!! = 1|𝐷𝑍 = 𝐶11!"
= 4 ⋅ 𝑝∗ 1 − 𝑝∗ ! ⋅

1
4
+ 2 ⋅ 𝑝∗! 1 − 𝑝∗ ! ⋅ 1 + 4

⋅ 𝑝∗! 1 − 𝑝∗ ! ⋅
9
16

+ 4 ⋅ 𝑝∗! 1 − 𝑝∗ ⋅ 1 + 1 ⋅ 𝑝∗! ⋅ 1

= 𝑝∗ 1 − 𝑝∗ ! +
17
4
⋅ 𝑝∗! 1 − 𝑝∗ ! + 4 ⋅ 𝑝∗! 1 − 𝑝∗

+ 𝑝∗!	
Note:	𝐶00!",	𝐶01!",	𝐶11!",	𝐶00!",	𝐶01!",	and	𝐶11!"	are	the	indicated	probabilities	for	each	scenario.	

We	may	combine	the	information	in	eTable	1	and	eTable	4	to	find	the	likelihood	of	the	data,	presented	
in	eTable	5.	The	likelihood	will	depend	on	the	observed	disease	status	and	be	summed	over	the	
distribution	of	necessary	causes	in	twins	in	a	pair.	



eTable	5:	Likelihood	contribution	from	MZ	and	DZ	pairs	with	different	observed	disease	status	

MZ	 𝒚𝒊𝟏	 𝒚𝒊𝟐	
𝑳𝒊,𝑴𝒁 𝒓𝑴𝒁, 𝒕 = 𝐏𝐫 𝒀𝒊𝟏 = 𝒚𝒊𝟏,𝒀𝒊𝟐 = 𝒚𝒊𝟐|𝑿𝒊𝟏 = 𝒌,𝑿𝒊𝟐 = 𝒍, 𝒓𝑴𝒁, 𝒕 𝐏𝐫 𝑿𝒊𝟏 = 𝒌,𝑿𝒊𝟐 = 𝒍

𝟏

𝒍!𝟎

𝟏

𝒌!𝟎

	

0	 0	 1 ⋅  𝐶00!" +
1
2𝜋

1 𝑟!"
𝑟!" 1

!!!
exp −

1
2
𝑧! 𝑧!

1 𝑟!"
𝑟!" 1

!! 𝑧!
𝑧!

!

!!

!

!!
𝑑𝑧!𝑑𝑧! ⋅ 𝐶11!"	

0	 1	 1
2𝜋

1 𝑟!"
𝑟!" 1

!!!
exp −

1
2
𝑧! 𝑧!

1 𝑟!"
𝑟!" 1

!! 𝑧!
𝑧!

!

!

!

!!
𝑑𝑧!𝑑𝑧! ⋅ 𝐶11!"	

1	 0	 1
2𝜋

1 𝑟!"
𝑟!" 1

!!!
exp −

1
2
𝑧! 𝑧!

1 𝑟!"
𝑟!" 1

!! 𝑧!
𝑧!

!

!!

!

!!
𝑑𝑧!𝑑𝑧! ⋅ 𝐶11!"	

1	 1	 1
2𝜋

1 𝑟!"
𝑟!" 1

!!!
exp −

1
2
𝑧! 𝑧!

1 𝑟!"
𝑟!" 1

!! 𝑧!
𝑧!

!

!

!

!
𝑑𝑧!𝑑𝑧! ⋅ 𝐶11!"	

	 	 	 	
DZ	 𝑦!!	 𝑦!!	

𝐿!,!" 𝑟!", 𝑡 = Pr 𝑌!! = 𝑦!!,𝑌!! = 𝑦!!|𝑋!! = 𝑘,𝑋!! = 𝑙, 𝑟!", 𝑡 Pr 𝑋!! = 𝑘,𝑋!! = 𝑙
!

!!!

!

!!!

	

0	 0	
1 ⋅  𝐶00!" + 2 ⋅

1
2𝜋

exp −
1
2
𝑧!

!

!!
𝑑𝑧 ⋅ 𝐶01!"

+
1
2𝜋

1 𝑟!"
𝑟!" 1

!!!
exp −

1
2
𝑧! 𝑧!

1 𝑟!"
𝑟!" 1

!! 𝑧!
𝑧!

!

!!

!

!!
𝑑𝑧!𝑑𝑧! ⋅ 𝐶11!"	

0	 1	 1
2𝜋

exp −
1
2
𝑧!

!

!
𝑑𝑧 ⋅ 𝐶01!"

+
1
2𝜋

1 𝑟!"
𝑟!" 1

!!!
exp −

1
2
𝑧! 𝑧!

1 𝑟!"
𝑟!" 1

!! 𝑧!
𝑧!

!

!

!

!!
𝑑𝑧!𝑑𝑧! ⋅ 𝐶11!"	

1	 0	 1
2𝜋

exp −
1
2
𝑧!

!

!
𝑑𝑧 ⋅ 𝐶01!"

+
1
2𝜋

1 𝑟!"
𝑟!" 1

!!!
exp −

1
2
𝑧! 𝑧!

1 𝑟!"
𝑟!" 1

!! 𝑧!
𝑧!

!

!!

!

!
𝑑𝑧!𝑑𝑧! ⋅ 𝐶11!"	

1	 1	 1
2𝜋

1 𝑟!"
𝑟!" 1

!!!
exp −

1
2
𝑧! 𝑧!

1 𝑟!"
𝑟!" 1

!! 𝑧!
𝑧!

!

!!

!

!!
𝑑𝑧!𝑑𝑧! ⋅ 𝐶11!"	

Note:	Observed	disease	status	is	indicated	by	𝑦!!	and	𝑦!!.	Prevalence	assumed	equal	across	zygosities	(𝑡	equal	for	
MZ	and	DZ). 𝑟!"	and	𝑟!"	represent	the	correlation	in	MZ	and	DZ	twin	pairs,	respectively.	

It	is	now	possible	to	use	𝑟!"	and	𝑟!"	in	standard	twin	modelling	to	estimate	heritability.		

	


