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Figure 4 Group differences in gut microbial composition at 4 months. Differences in gut microbial composition in Kenyan infants (n=155) after 
4 months of receiving daily a micronutrient powder containing either no iron (control); 5 mg of iron (Fe); or 5 mg of iron and 7.5 g of galacto-
oligosaccharides (FeGOS). (A–C) All taxa. (D–F) Inset box shows only taxa that were prespecified targets of interest. Nodes represent taxa; edges link 
the different taxonomic levels. The node-size corresponds to the relative abundance (in %). The fold difference is calculated as the 2log of the ratio of 
the relative abundance between groups. Significance is expressed as the p value of a Mann–Whitney U test; exact p values for significance are in the 
text. 
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Figure 5 Abundances of the sum of virulence and toxin genes of the 10 targeted pathogens and intestinal fatty acid-binding protein (I-FABP), by 
group. Kenyan infants (n=155) receiving daily a micronutrient powder containing either no iron (control); containing 5 mg of iron (Fe); or containing 
5 mg of iron and 7.5 g of galacto-oligosaccharides (FeGOS). (A) The abundances of the sum of virulence and toxin genes of the 10 targeted pathogens 
(online supplementary table 1) at baseline, 3 weeks and 4 months, by group, *p<0.05, **p<0.01. Significance expressed as the p value of a Wilcoxon 
rank-sum test. (B) I-FABP at baseline and 4 months, by group, *p=0.0498. Significance expressed as the p value of analysis of covariance with baseline 
values as covariate. Boxes show the median and 25th and 75th percentiles; whiskers show the range; points show individual values. 
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and markers of gut and systemic inflammation are given in the 
online supplementary material.

Faecal calprotectin and pH, and plasma I-FAbP
At 3 weeks and 4 months, there were no significant group differ-
ences in faecal calprotectin, although there was a non-significant 
≈30% decrease from baseline to 3 weeks in the FeGOS group 
(table 2). At 3 weeks, faecal pH was higher in the Fe group than in 
the control and FeGOS groups (p=0.005 and p=0.001, respec-
tively) (table 2). At 4 months, compared with the control group, 
I-FABP was higher in the Fe group (p=0.0498) (figure 5B).

Infant morbidity
For morbidity assessed at the weekly visits, there were no signif-
icant time by treatment effects on diarrhoea or fever, but there 
was a significant time by treatment effect on the incidence of 
RTIs, with  a decrease in RTIs over time in the FeGOS group 
(p=0.039). During the 4-month intervention, we recorded 465 
treated cases in the health clinics: 237 for RTI, 74 for diar-
rhoea, 56 for malaria, 39 for skin infection and 59 for other 
health problems. There were no significant group differences 
in the number of infants treated for diarrhoea or other health 
problems during the intervention. However, more infants in the 
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Figure 6 Treated respiratory tract infections (RTIs), by group. Kenyan 
infants (n=155) receiving daily a micronutrient powder containing 
either no iron (control); containing 5 mg of iron (Fe); or containing 5 mg 
of iron and 7.5 g of galacto-oligosaccharides (FeGOS).*p=0.013. p value 
expresses the significant time effect of a generalised linear model with 
infants treated for RTI as response variable, time as fixed factor and 
subject as a random effect.

Gut microbiota

Fe group were treated for a RTI during the intervention (n=45; 
87% of all infants) compared with the control group (n=38; 
75%) (p=0.024) and compared with the FeGOS group (n=39; 
75%) (trend, p=0.098). Over the 4 months of the study, there 
was a decrease in treated cases of RTIs in the FeGOS group 
(p=0.013) (figure 6) but no significant change in the other two 
groups.

DIscussIOn
Due to the potential adverse effects of unabsorbed iron on the 
infant gut,15 the iron dose in MNPs should be as low as possible 
while retaining efficacy against anaemia. In this study, daily use 
for 4 months of a MNP containing 5 mg iron as ferrous fumarate 
and NaFeEDTA was clearly efficacious in reducing anaemia and all 
measures of iron deficiency (table 2). The haematological response 
comparing Fe and FeGOS was comparable, suggesting the addi-
tion of the GOS did not affect iron bioavailability. This 5 mg dose 
is 60% lower than the 12.5 mg in currently used MNPs, yet the 
improvements in Hb (≈+5–9 g/L) and reductions in anaemia 
(≈−30%–50%) compare favourably with those reported for 
12.5 mg iron MNPs.3

Previous intervention studies of the effect of iron on the 
infant and child microbiome are limited.23 In a controlled 
trial in 6-month-old Kenyan infants, iron-containing MNPs 
increased the Enterobacteriaceae:Bifidobacteriaceae ratio 
and numbers of enteropathogenic E. coli.15 In contrast, in 
6-month-old Malawian infants randomised to no interven-
tion or dietary supplements providing 5.5–6.0 mg iron/day, 
there were no significant differences in the gut microbiota 
after 12 months.24 In a controlled trial in Ivorian school-
aged children receiving iron-fortified biscuits (≈9 mg iron/
day), iron increased Enterobacteriaceae and decreased Lacto-
bacillaceae.19 In contrast, in South African school-aged chil-
dren from an area with better hygiene, iron supplements 

(50 mg/day, 4 days/week) caused no discernible effects on the 
gut microbiota.25 The varied findings from these studies are 
likely due to age-related differences in the gut microbiota 
between infants and older children, differences in methods 
used to characterise the gut microbiome, differences in 
geographical setting and hygiene and/or the iron compound 
and dose given.

In our study, addition of GOS to an iron-containing MNP 
counterbalanced the effects of iron: after 4 months of the inter-
vention in the Fe group, there were lower relative abundances 
of Bifidobacteriaceae and Lactobacillaceae, and higher relative 
abundances of Clostridiales, compared with the control and 
FeGOS groups; in contrast, there were no significant differences 
in these taxa comparing the FeGOS group with the control 
group (Figure 4F). We chose a GOS dose of 7.5 g/day based on 
studies that reported a bifidogenic effect in infants and adults at 
this dose and because this is the typical daily dose delivered by 
GOS-containing commercial infant formulas.12 17 The enhance-
ment of commensal bacteria strengthens the barrier effect against 
enteropathogen growth: commensal bacteria occupy more 
microbiological niches, compete for nutrients, increase secre-
tory IgA and reduce pathogen adhesion site.12 17 The suppres-
sive effect on enteropathogens was visible in our data: during 
the intervention, the FeGOS group had lower abundances of the 
VTGs of all pathogens (figure 5A) and the VTGs of pathogenic 
E. coli compared with the Fe and control groups. Prebiotics also 
increase commensal production of SCFAs that decrease luminal 
pH, which may reduce growth of pathogens,26 27 and in our 
study, at 3 weeks, faecal pH was lower in the FeGOS group than 
in the Fe group (table 2).

Previous studies in African infants15 and children19 have 
shown that iron fortification increases faecal calprotectin. 
Faecal calprotectin is a non-specific marker of gut inflammation 
that reflects neutrophil infiltration of the mucosa28 29; levels 
are normally high in early infancy and decrease over the first 
2 years as the gut matures.15 In contrast to our previous MNP 
trial in Kenyan infants where a 12.5 mg iron dose increased 
faecal calprotectin, the 5 mg dose used here (and a 2.5 mg dose 
used previously15) did not increase faecal calprotectin (table 2), 
suggesting that daily doses of ≤5 mg iron may not trigger gut 
inflammation in this setting. Damaged enterocytes release I-FABP 
into the bloodstream30; it is a sensitive marker for enterocyte 
injury and can be combined with faecal calprotectin to assess 
disease severity.31 I-FABP in our infants at baseline was higher 
than in European children with sepsis,32 and high plasma I-FABP 
in African infants may reflect enterocyte injury due to common 
enteric infections.33 In our study, at 4 months, I-FABP was higher 
in the Fe group than in the control group, while there was no 
significant difference comparing the FeGOS group with control 
(figure 5B), suggesting the addition of GOS may have reduced 
Fe-mediated enterocyte damage; this effect may be mediated 
through changes in gut microbiota34 and/or iron-induced oxida-
tive stress to enterocytes.35

Compared with the Fe group, there was a lower incidence of 
RTIs in the FeGOS group and a decrease in RTIs in the FeGOS 
group over the 4-month intervention (figure 6), but no group 
differences in diarrhoea. In our previous MNP study in Kenyan 
infants, there was a non-significant increase in incidence of 
diarrhoea with the 12.5 mg Fe dose, but no increase in RTIs.15 
This difference might be explained by the lower dose of iron 
in the present study, and/or because the infants in the present 
study were ≈2 months older at entry. In a large MNP study 
(12.5 mg iron/day) that systematically collected morbidity data 
in Pakistani infants aged 6–18 months, there was an increased 
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incidence of RTIs and diarrhoea with iron.7 Controlled trials 
in industrialised countries have reported that GOS alone or 
in combination with other prebiotics and probiotics reduced 
RTIs in infants.36 37 Possible mechanisms of how prebiotics and 
probiotics reduce RTIs include reduced pathogen colonisation 
in the respiratory epithelium,38 regulation of mucosal immu-
nity through activation of inflammasomes and modulation of 
the systemic immune response.39

Strengths of our study include (1) its double-blind, 
randomised controlled design; (2) a study population with high 
carriage rates of enteropathogens; (3) low attrition rate (≈6%) 
during the study; and (4) extensive characterisation of the gut 
microbiome using the complementary methods of sequencing 
and qPCR for selected target species. We used maltodextrin 
in the control and Fe groups as a neutral comparator to the 
GOS because glucose from maltodextrin is rapidly absorbed 
in the proximal small intestine,40 so its presence is unlikely to 
have influenced our comparisons. A limitation of our study is 
that despite randomisation, there were small baseline differ-
ences in gut microbiota composition among the groups, which 
may have affected our comparisons. Also, because of the small 
sample size and high between-subject variability for the gut 
microbiota, a beta error may have contributed to non-signifi-
cant comparisons. In addition, we characterised the gut micro-
biome in faecal samples, which may not necessarily represent 
bacterial abundances in the distal small intestine, caecum and 
proximal colon.40

In conclusion, a MNP containing a 5 mg daily dose of 
highly bioavailable iron is efficacious in reducing IDA in 
African infants, and this low dose is likely safer in that it 
induces less adverse changes in the gut microbiome and no 
increase in faecal calprotectin compared with a 12.5 mg 
iron dose.15 Our findings suggest that prebiotics given with 
iron-containing MNPs in the African setting may be benefi-
cial to reduce the adverse effects of iron on the infant gut 
microbiome. Expert groups have judged prebiotics to be safe 
and well tolerated in infants18; however, nearly all previous 
studies were done in infants from high-income countries 
with good hygiene. Further studies confirming the safety and 
tolerability of GOS in the African setting are needed, as well 
as the smallest effective dose of GOS needed to offset the 
adverse effects of iron on the infant gut. In addition, studies 
combining GOS with iron fortificants or supplements in 
other geographical settings (eg, South Asia) and in older 
children would be valuable.
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