Faecal microbiota composition associates with abdominal pain in the general population

We read with great interest the recent communication by Simrén et al,1 reporting a correlation between visceral hypersensitivity and GI symptom severity in functional GI disorders (FGID). Previously, it has been shown that visceral hypersensitivity can be modulated or even induced in animal models, by altering the composition of their gut microbiota with antibiotics or faecal transplantation from IBS donors.2 3 Hence, while a direct link between gut microbiota composition and visceral pain may need to be conclusively established, this holds great potential for translational exploitation in the treatment of IBS and other FGID. Thus far, the potential association between microbiota and abdominal pain in humans has only been investigated in one study that included 15 individuals.4 For this purpose, we studied 159 individuals (average age 59.1, 39.6% men) from the Swedish Population-based Colonoscopy (PopCol) cohort, previously described and with faecal microbiota 16S sequencing data and daily recordings of abdominal pain (number of episodes, duration and intensity) collected over the same period (7.4±7.9 days).5–7 Among these, 52 individuals (assigned to the case group) reported at least one episode of light, moderate or intense pain (respective scores 1, 2 and 3), while the other 107 (controls) never reported pain. On average, those with pain experienced it 0.30 times per day (range 0.07–1.57), for 2.46 hours each time (range 0.37–9) and on a light-moderate intensity level of 1.39 per episode (range 1–2.1). When compared, both at the level of genus and species-level operational taxonomic units (OTU), β-diversity measures of faecal microbiota from cases and controls significantly differed (figure 1). In addition, significant correlations with microbiota β-diversity were detected for pain indices of frequency, duration and intensity (figure 1). Classifying individuals according to their microbiota profiles clustered into enterotypes (http://enterotyping.embl.de) resulted in three groups, respectively, enriched for unclassified Ruminococcaceae, Prevotella and Bacteroides. As shown in figure 2, a χ2 analysis revealed their distribution to be significantly different in cases and controls (p=0.039), and the Prevotella-predominant enterotype was underrepresented in the pain group (21% vs 41% in controls). When taxa previously associated with abdominal symptoms in animal models and clinical studies (Bacteroides, unclassified Ruminococcaceae, Butyrivibrio, Prevotella, Faecalibacterium, Streptococcus, Bifidobacterium, Blautia, Akkermansia, Lactobacillus, Alstipes and Enterobacter) were compared with a Wilcoxon rank-sum test for their...
abundance in the pain and control groups, Benjamini-Hochberg corrected significant differences were observed for Prevotella (decreased in cases, p=0.038), Blautia (increased in cases, p=0.045), Streptococcus (increased in cases, p=0.038) and Lactobacillus (increased in cases, p=0.038). In particular, in an indicator value analysis on genus level, Prevotella could significantly predict the absence of abdominal pain (corrected p=0.016, association statistics=0.76 using the multipatt function of the R package indicspecies). Similar results were obtained when testing correlations with pain frequency, duration and intensity and after removal of individuals (n=18) whose questionnaire data were compatible with a diagnosis of IBS according to Rome III criteria (not shown).

Simultaneous assessment of metabolic parameters, gut microbiota composition and the self-reported frequency of abdominal pain could significantly predict the absence of abdominal pain (corrected p=0.016, association statistics=0.76 using the multipatt function of the R package indicspecies).

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

To cite Hadizadeh F, Bonfiglio F, Belheouane M, et al. Gut 2018;67:778–779. Received 4 July 2017 Accepted 13 July 2017 Published Online First 1 August 2017


REFERENCES

3 Crouzet L, Gauthier E, Del’Homme C, et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil 2013;25:e272–e282.