IMPROVING HEPATITIS C DETECTION AND TREATMENT VIA COMMUNITY-BASED SERVICES

Douglas Corrigall*, Linda Porter, Sarah Fairclough, Katrina White, Denise Kilworth, Gavin Wright, Basildon And Thurrock University Hospital, Basildon, UK

10.1136/gutjnl-2018-BSGAbstracts.243

Introduction With the advent of highly efficacious Direct Acting Antiviral (DAA) Hepatitis C (HCV) therapy, the World Health Organisation project global HCV eradication by 2030 and NHS-England is targeting HCV eradication nationally by 2025. Despite a nationwide HCV operational delivery network it is estimated that ~90% of those infected in England are not actively engaged with secondary/tertiary HCV services providing therapy and many, often asymptomatic, remain untested and undiagnosed. These patients do engage with primary care; but with increasing pressures on these services and absence of national screening, detection and onward referral to treatment centres are poor. This is a barrier to achieving this target, and the new frontier for HCV services is improved detection and engagement in the community. People with a history of intravenous drug and alcohol misuse have a high prevalence of HCV; are often sexually active with higher rates of transmission, have limited access to and/or engagement with HCV services, but often do attend community drug and alcohol services (CDAS). Our aims were to increase identification and treatment of patients with HCV by engaging these individuals within a community-based setting.

Methods Over one year (August 2015–2016), in partnership with five local CDAS we provided onsite nurse-led consultation, counselling, screening and risk stratification through non-invasive measurement of liver stiffness (fibroscan), dried blood spot screening (HBV/HCV/HIV serology, HCV RNA, T-spot), and referral to secondary care for initiation of approved DAA therapy and ongoing management of any concomitant chronic liver disease.

Results 174 CDAS service-users were screened and 123 (70%) were diagnosed as HCV RNA positive; 54% Genotype 3% and 46% Genotype 1. Median fibroscan score 7.1 Kpa, with 21 (12%) had a fibroscan Result suggestive of cirrhosis and were prioritised to treatment according to National guidance via our NHS-England HCV ODN.

To-date 86 (70%) of the HCV positive patients have attended our clinic for consideration of access to DAA therapy.

Conclusions This community-based pilot had a significant rate of detection (70%), and excellent conversion to secondary care clinic review (70%). However, the majority of our patients had low levels of fibrosis and as NHS England policy over that period prioritised for patients with advanced disease, this cohort did not receive immediate access to treatment from the ODN over the time of the project, with Resultant disengagement by many from secondary care. Given recent changes in treatment access prioritisation we are now actively reengaging this group which represents an ongoing challenge.

MORE IS LESS – PRESENTING WITH ACUTE VARICEAL BLEEDING

Benjamin Crooks*, Helen White, Vivek Goodsoony, Thomas Butler, Mark Mugattooyd, Jawaid Iqbal. Wythenshawe Hospital, Manchester University Foundation Trust, Manchester, UK

10.1136/gutjnl-2018-BSGAbstracts.244

Introduction Acute variceal bleeding (AVB) has historically accounted for up to 10% of all GI bleeds necessitating emergency out of hours endoscopy. These patients have a significantly poorer prognosis and higher re-bleed rate than non-variceal GI haemorrhage. In the last 3 years we have anecdotally noticed a significant reduction in AVB necessitating emergency endoscopy. This has coincided with the employment of dedicated hepatologists. We sought to quantify this reduction with the employment of one and then a second hepatologist at a university teaching hospital 18 months apart.

Methods This was a retrospective review identifying all AVB patients who underwent emergency endoscopy over a 3 year period between January 2015 and December 2017. Data was collected from the electronic database and the GI reporting tool. This included endoscopic findings, therapy performed and whether there was a previous history of AVB requiring endoscopy. A dedicated hepatologist was employed in January 2015 (period 1; 18 months) and a second hepatologist June 2016 (period 2; 18 months).

Results Prior to a dedicated hepatologist all patients were followed up by general gastroenterologists. There was no dedicated variceal banding programme. There were up to 300 acute GI bleed endoscopies a year with approximately 10% due to AVB. Both hepatologists began performing weekly dedicated oesophageal variceal screening and treatment endoscopy lists (between 1–2/wk). During period 1, there were 30 AVB; 27/30 (90%) received therapy, in the remaining 3, banding could not be applied due to poor views and injection therapy or eldestaken tube placement was performed. Of those presenting; 21/30 (70%) had previous OGD and banding but only 8/21 (38%) had previously been on banding program.

During period 2, there were 20 AVB; 19/20 (95%) received therapy. 12/20 (60%) had previous OGD and banding, and only 3/20 (15%) were on a dedicated banding programme.
Conclusions Prior to a dedicated hepatologist the vast majority of those presenting with AVB have a history of previous AVB and are potentially avoidable. With the advent of dedicated banding lists (as well as closer follow up with more robust secondary prophylaxis) there has been a major reduction of AVB presenting. There has been a shift of ‘new’ AVB unknown to the system rather than previous existing patients having undergone prior therapy. This has equated to a significant reduction in AVB of 30% during period 1% and 56% during period 2. Dedicated ‘surveillance’ lists such as for Barrett’s have shown to reduce the incidence of late presentation of disease and we propose that dedicated varices surveillance and banding lists can reduce acute admissions.

Conclusions Surveillance was associated with earlier stage cancers and receipt of potentially curative treatment. However, patients known to secondary care made up a minority of HCC diagnoses. Improving identification and diagnosis of cirrhosis in primary care may therefore help identify at-risk patients earlier, although not all patients will engage with follow-up.

AFP measurement may identify additional cases of HCC that go undetected by USS, but should be weighed against potential patient harms from false-positive Results. Further studies should continue to inform an optimum HCC surveillance strategy.

Introduction Hepatocellular carcinoma (HCC) mortality and incidence is increasing worldwide. Current guidelines recommend biannual surveillance with ultrasound (US) and/or alpha-fetoprotein (AFP) to ensure early detection and prompt treatment, yet the benefit on patient outcomes is uncertain in the absence of high quality data. We aimed to describe the merits of HCC surveillance in a single-centre cohort with an ethnically diverse population.

Methods We retrospectively identified patients diagnosed with HCC from 2010 to 2017. We determined whether HCC occurred on surveillance or not. We collected information including demographic data, aetiology and severity of liver disease, AFP levels, tumour size, initial treatment, survival status and cause of death.

Results 101 cases were identified. Median age was 71 years (range 47–94), 75% were male. 63% were white and 25% from South Asian background. The commonest aetiology was Non-Alcoholic Fatty Liver Disease (NAFLD, 22.8%), followed by Alcohol-Related Liver Disease (ARLD, 19.8%), Hepatitis C (HCV, 21.8%) and Hepatitis B (HBV, 5%). 7/22 patients with HCV had achieved SVR. Only 1 received direct-acting antivirals (DAA) prior to HCC diagnosis.

25/101 patients were diagnosed on HCC surveillance; 11/101 presented with acute decompensated cirrhosis (9 were under a surveillance programme, 2 had failed to attend); 43/101 presented with symptoms and 22/101 were incidental findings. HCV was the predominant aetiology in those presenting symptomatically.

AFP was normal in half of all cases. Of those on surveillance, 63% had AFP measured prior to diagnosis and 8.5% had a raised AFP when initial imaging was normal. 57% patients were Child’s A, 38% Child’s B and 5% Child’s C at diagnosis.

Patients were more likely to have HCC diagnosed at an early stage on surveillance (68.6% vs 30.3%) and receive curative treatment (22.8% vs 12.1%) than the non-surveillance group. 1 and 3 year survival rates were greater on surveillance (67.7% vs 41.1% and 22.2% vs 8.16%, respectively). Median survival after diagnosis in the surveillance group was greater than those presenting for the first time.

Conclusions Survival estimates for different Barcelona Clinic Liver Cancer (BCLC) stages in hepatocellular carcinoma (HCC) contained in the EASL-EORTC Clinical Practice Guidelines rely on outcomes from randomised control trials and meta-analysis of pooled data. To identify areas for development to facilitate improvements in outcomes we aimed to provide an insight into HCC survival outcomes outside a clinical trials setting by presenting a large experience of patients referred to HCC to a regional hepatobiliary cancer centre in the UK.

Methods All patients referred to the Hepatobiliary Cancer Multidisciplinary Team with a diagnosis of HCC over a two year period (January 2013 to December 2014) were included. Patients were stratified by their initial treatment modality according to the BCLC classification. Kaplan-Meier survival analysis was used to compare outcomes by initial treatment allocation.

Results Among 356 patients (median age 66 years, 291 (82%) male), the most frequent underlying disease aetiologies were hepatitis C and alcohol-related liver disease. Overall survival at 3 years after diagnosis was 38% and 146 patients (41%) received treatment with curative intent. The 3 year survival for liver transplant was 84% (56 patients) and for resection it was 89% (46 patients). The median survival for radiofrequency ablation was 45 months (44 patients) and for transarterial chemoembolization (TACE) it was 18 months (72 patients). For patients receiving sorafenib as first-line therapy, the median survival was 9.6 months (12 patients) and for those receiving best supportive care (BSC) it was 3.4 months (126 patients).

Conclusions These estimates of overall survival are consistent with those published in the EASL-EORTC Clinical Practice Guidelines and demonstrate that these figures give a reliable estimate of overall survival in a real-world experience. Over one third of patients were unsuitable for anti-cancer therapy at presentation and only a minority received treatment with curative intent. This highlights areas for potential improvement in outcomes particularly through early diagnosis of cirrhosis, facilitating treatment of the underlying cause of liver disease as well as the implementation of surveillance for HCC. Screening strategies for cirrhosis should be investigated to determine whether these can reduce overall mortality, including that from HCC.