Conclusions The result of this study shows that most of GI symptoms due to GI cancer were in mild to moderate category and can be managed with prior knowledge of their occurrence. Managing GI symptoms will not ameliorate the disease process but certainly will improve the daily activities and add to the improved quality of life.

IDDF2018-ABS-0183 P53-INDUCED MIR-1249 SUPPRESSES TUMOUR PROGRESSION BY TARGETING VEGFA AND HMGA2 IN COLORECTAL CANCER

Xiaoxiang Chen*, Shukui Wang. School of Medicine, Southeast University, China

Background MicroRNAs (miRNAs) are an important class of functional regulators involved in human cancers development, including colorectal cancer (CRC). Exploring aberrantly expressed miRNAs may provide us with new insights into the initiation and development of CRC by functioning as oncogenes or tumour suppressors. The aim of our study is to discover the expression pattern of miR-1249 in CRC and investigate its clinical significance as well as a biological role in CRC progression.

Methods QRT-PCR was used to detect the relative expression of miR-1249 in CRC tissues and cell lines. EdU, CCK-8, Wound healing, transwell and HUVECs tube formation assays were performed to assess the effect of miR-1249 on CRC cell proliferation, migration, invasion and angiogenesis in vitro, nude mouse xenograft, tail vein injection and chicken chorioallantoic membrane(CAM) model were used to observe CRC growth, metastasis and angiogenesis in vivo. Luciferase reporter assay, western blot, immunohistochemistry(IHC) and immunofluorescence(IF) staining were fulfilled to explore the molecular mechanism of miR-1249 in CRC.

Results MiR-1249 was found to be markedly downregulated in CRC tissues and cell lines. The expression of miR-1249 was negatively related to pN stage, pM stage, TNM stage and overall survival(OS). Moreover, we found that miR-1249 was a direct transcriptional target of P53 and revealed that P53-induced miR-1249 inhibited tumour growth, metastasis and angiogenesis in vitro and vivo. Additionally, we verified that miR-1249 suppressed CRC proliferation and angiogenesis by targeting VEGFA as well as inhibited CRC metastasis by targeting VEGFA and HMGA2. Further studying showed that miR-1249 suppressed CRC cell proliferation, migration, invasion and angiogenesis via VEGFA-mediated Akt/mTOR pathway as well as inhibited EMT process of CRC cells by targeting VEGFA and HMGA2.

Conclusions Our study demonstrated that P53-induced miR-1249 might suppress CRC growth, metastasis and angiogenesis by targeting VEGFA and HMGA2, as well as regulate Akt/mTOR pathway and EMT process in the initiation and development of CRC. miR-1249 might be a novel the therapeutic candidate target in CRC treatment.

IDDF2018-ABS-0184 LNCRNA AGPG REGULATES ANABOLISM REMODELLING THROUGH AFFECTING PFKFB3 STABILITY IN ESCC

Jia Liu*, Ze-Xian Liu, Qi-Nian Wu, Chau-Wei Wong, Yun-Xin Lu, Ying-Nan Wang, Yun Wang, Jia-Huan Lu, Hong-En Yu, Huai-Qiang Ju, Rui-Hua Xu. Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, China; The First Affiliated Hospital of Sun Yat-sen University, China

Background LNCRNA AGPG (ACC-associated non-coding RNA) is upregulated in ESCC and has been shown to be involved in ESCC progression. PFKFB3, a key enzyme in the glycolytic pathway, has been identified to be downregulated in ESCC. Here, we investigated the effects of AGPG on PFKFB3 stability in ESCC.

Methods QRT-PCR was used to detect the relative expression of AGPG and PFKFB3 in ESCC tissues and cell lines. Western blot and immunofluorescence staining were performed to explore the expression pattern of AGPG and PFKFB3 in ESCC tissues. Luciferase reporter assay and western blot were used to explore the molecular mechanism of AGPG in ESCC.

Results AGPG was found to be markedly upregulated in ESCC tissues and cell lines. The expression of AGPG was negatively related to pN stage, pM stage, TNM stage and overall survival(OS). Moreover, we found that AGPG-induced PFKFB3 was a direct transcriptional target of P53 and revealed that P53-induced AGPG inhibited tumour growth, metastasis and angiogenesis in vitro and vivo. Additionally, we verified that AGPG suppressed ESCC cell proliferation, migration, invasion and angiogenesis via PFKFB3-mediated Akt/mTOR pathway as well as inhibited EMT process of ESCC cells by targeting PFKFB3.

Conclusions Our study demonstrated that AGPG might suppress ESCC growth, metastasis and angiogenesis by targeting PFKFB3, as well as regulate Akt/mTOR pathway and EMT process in the initiation and development of ESCC. AGPG might be a novel therapeutic candidate target in ESCC treatment.