Background
Silaybum marianum or milk thistle is the most well-researched plant in the treatment of liver disease. Silymarin, derived from the milk thistle plant, silybum marianum, has been used for centuries as a natural remedy for diseases of the liver and biliary tract. The current study aimed to investigate the silybum marianum seed extract as hepatoprotective agent versus hepatic damages caused by carbon tetrachloride (CCl4).

Methods
Male Wistar albino rats were divided into two equal groups (n=8) and treated as follows: Group 1, kept as control group and orally given saline; Group 2, kept as control positive and were administered daily oral doses of silymarin (50 mg/kg) daily for 21 days and subsequently injected i.p. with CCl4 (50% v/v in olive oil; 1 ml/kg) on the 22nd day. CCl4-induced damages were assessed through liver function markers viz.; alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST), γ-glutamyltransferase (γ-GT) and lactate dehydrogenase (LDH). Changes in lipid profile were checked by measuring serum total cholesterol (TC), triglycerides (TG), high-density lipoproteins (HDL) and low-density lipoproteins (LDL). Antioxidant status was checked by the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase), DNA damages, malondialdehyde (MDA) and nitric oxide (NO) content. The histopathological changes were observed with Masson staining.

Results
Administration CCl4 induced an elevation of serum amino- and glutamyl transferases activities and an increased peroxidation, as well as a decrease of superoxide dismutase and glutathione peroxidase activities in the liver. Administration of CCl4 in rats caused a significant increase in liver function and lipid profile indicating hepatic damages which were restored by co-administration of silymarin. Cellular and DNA damages in hepatic tissues were caused by CCl4 which shown clear hepatic fibrosis in addition to disturbing antioxidant enzyme level. Co-treatment with silymarin regulated these makers of oxidative dysfunctions. Silymarin enhances hepatic glutathione and may contribute to the antioxidant defence of the liver.

Conclusions
It may be concluded that silymarin has the ability to reverse CCl4 induced hepatic damages. Silymarin has been used to treat alcoholic liver disease, acute and chronic viral hepatitis and toxin-induced liver diseases.

Clinical Gastroenterology

IDDF2018-ABS-0001 FOREIGN BODY INGESTION: 4 CASES WITH DIFFERENT MANAGEMENT APPROACH

1Garima Gupta*, 2Deepak Kumar, 3Urmila Jham. 1Hindu Rao Hospital and NDMC Medical College, New Delhi, India; 2Maulana Azad Medical College, New Delhi, India

Background
We managed four cases of ingested foreign bodies located in oesophagus and stomach differently. There are specific guidelines for the management of FB ingested in paediatrics age group depending upon type, size, symptoms and location in the digestive tract.

Methods
Our first two cases were of ingested button battery which is blunt or non-sharp type contain corrosives, small in size (<2 cm diameter) and were impacted in the oesophagus, both the patients presented to us late by day 4 and 5. Both presented with symptoms of a cough, dysphagia, vomiting and respiratory distress later diagnosed tracheoesophageal fistula and needed surgical correction. Our third case was a 5 years old patient who had ingested a coin, which is blunt in type, was exactly 2 cm in diameter and was located in the stomach. As per guidelines he was followed serially for location by X-ray and symptoms but was later removed endoscopically, as coin had not passed the stomach outlet by the 4th week and had a risk of mucosal injury, although the patient was asymptomatic. Our fourth case had ingested small blunt plastic toy part which was initially impacted in oesophagus before referred to us. FB was tried to be removed endoscopically from oesophagus as soon as diagnosed with X-ray but was pushed down to the stomach during the procedure. In this case, the patient was further observed by us since the FB reached the stomach which was later found passed spontaneously in stool on day 6 after endoscopic failure.

Abstracts

IDDF2018-ABS-0265 BENEFICIAL EFFECTS OF SILYBUM MARIANUM SEED EXTRACT AGAINST HEPATIC FIBROSIS INDUCED BY CARBON TETRACHLORIDE IN RATS

Sanjay Kumar*, RK Khanna. Department of Basic and Applied Biology, Vivekananda Global University, Jaipur, Rajasthan, India

10.1136/gutjnl-2018-IDDFabstracts.56

Background
Silaybum marianum or milk thistle is the most well-researched plant in the treatment of liver disease. Silymarin, derived from the milk thistle plant, silybum marianum, has been used for centuries as a natural remedy for diseases of the liver and biliary tract. The current study aimed to investigate the silybum marianum seed extract as hepatoprotective agent versus hepatic damages caused by carbon tetrachloride (CCl4).

Methods
Male Wistar albino rats were divided into two equal groups (n=8) and treated as follows: Group 1, kept as control group and orally given saline; Group 2, kept as control positive and were administered daily oral doses of silymarin (50 mg/kg) daily for 21 days and subsequently injected i.p. with CCl4 (50% v/v in olive oil; 1 ml/kg) on the 22nd day. CCl4-induced damages were assessed through liver function markers viz.; alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST), γ-glutamyltransferase (γ-GT) and lactate dehydrogenase (LDH). Changes in lipid profile were checked by measuring serum total cholesterol (TC), triglycerides (TG), high-density lipoproteins (HDL) and low-density lipoproteins (LDL). Antioxidant status was checked by the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase), DNA damages, malondialdehyde (MDA) and nitric oxide (NO) content. The histopathological changes were observed with Masson staining.

Results
Administration CCl4 induced an elevation of serum amino- and glutamyl transferases activities and an increased peroxidation, as well as a decrease of superoxide dismutase and glutathione peroxidase activities in the liver. Administration of CCl4 in rats caused a significant increase in liver function and lipid profile indicating hepatic damages which were restored by co-administration of silymarin. Cellular and DNA damages in hepatic tissues were caused by CCl4 which shown clear hepatic fibrosis in addition to disturbing antioxidant enzyme level. Co-treatment with silymarin regulated these makers of oxidative dysfunctions. Silymarin enhances hepatic glutathione and may contribute to the antioxidant defence of the liver.

Conclusions
It may be concluded that silymarin has the ability to reverse CCl4 induced hepatic damages. Silymarin has been used to treat alcoholic liver disease, acute and chronic viral hepatitis and toxin-induced liver diseases.