Abstracts

IDDF2018-ABS-0254 RESPONSE IN SISTER MARY JOSEPH NODE—CAN IT BE A MARKER OF RESPONSE TO THERAPY IN METASTATIC CARCINOMA GALL BLADDER
Satyabrata Das*. King George’s Medical University, India
10.1136/gutjnl-2018-IDDFabstracts.177

Background Sister Mary Joseph Nodule, a rare presentation of gastrointestinal Malignancy usually signifies a poor prognosis. We present a case of Metastatic carcinoma of the gallbladder which was diagnosed with this unusual presentation. The patient was treated with palliative chemotherapy. Post three cycles of chemotherapy patient showed necrosis in Sister Mary Joseph Nodule. After 6 cycles of palliative chemotherapy patient had stable disease and until seven months of follow up patient was alive.

Methods A 45 year female was diagnosed with metastatic carcinoma gallbladder. On clinical examination, the patient had enlarged gallbladder with an umbilical nodule. FNAC of the Gallbladder mass and umbilical nodule showed poorly differentiated adenocarcinoma and metastatic adenocarcinoma respectively. The patient was given palliative chemotherapy Gemcitabine on Day1 and Day8. Post 3 such cycles patient was evaluated radiologically and clinically and was found to have stable disease through the umbilical nodule had turned black suggesting necrosis. The patient was given 6 cycles of chemotherapy and then followed every monthly clinically and radiologically.

Results After 7 months of follow up, the patient was alive. There was no recurrence radiologically or clinically and no disease-related Morbidity.

Conclusions A good response to chemotherapy can result in acceptable survival in metastatic carcinoma Gall Bladder. Necrotic change in Sister Mary Joseph Nodule can be a surrogate marker of such response.

IDDF2018-ABS-0257 DETECTING AND SEGMENTING POLYPS USING A DEEP LEARNING-BASED MODEL
1Liansheng Wang*, 1Shuxin Wang, 2Yanxing Hu, 1Shaohui Huang. 1Xiamen University, China; 2Xiamen Innovision Medical Technology Company, China
10.1136/gutjnl-2018-IDDFabstracts.178

Background Colorectal cancer is the third most common cancer in the world, which developed from untreated polyps. Detecting polyps in their early stage have become a serious medical issue. Wireless capsule endoscopy (WCE) was designed to examine the intestinal diseases without surgery and can give a direct visualisation of intestines, in which the time cost is to analyse lots of images to capture the abnormal parts. The doctors will be wearied with about 25 000 images per person produced by WCE. This study aims to build a computer-aided diagnosis system to help doctors analyse WCE images and detect polyps.

Methods We use a deep learning-based model to build a computer-aided diagnosis system of WCE images for the assignment of detecting and segmenting polyps. The U-Net network with both dices loss and cross entropy loss is employed in this work, which is considered as an encoding and decoding model. The data used were available from CVC-Colon and CVC-Clinic, it has 992 images with polyps totally. The data is shown in table 1. Comparison to other algorithms, the U-Net model can learn more features automatically and is a high-efficient method for our assignment.

Results The performance of polyp segmentation was evaluated by Dice’s coefficient (also known as the Dice coefficient), which presents the degree of similarity between prediction and ground truth. The Dice’s coefficient in our study is 84.15%. The segmentation results are shown in IDDF2018-ABS-0257 figure 1.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Total number</th>
<th>Training data</th>
<th>Validation data</th>
<th>Test data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract IDDF2018-ABS-0257 Table 1 Data are divided into training data, validation data, and test data

Abstract IDDF2018-ABS-0257 Figure 1 Segmentation results, showing the results of different size and number of polyps