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Figure 6 YAP1 and IGF2BP3 regulate each other during fetal programming. (A) qRT-PCR analysis for YAP1 and IGF2BP3 in Hep3B treated for 24 or 
48 hours with 2 or 10 µM of a pharmacological inhibitor of YAP1 activity, vertepor�n (VP), or 0.1% DMSO as a vehicle control (Veh). (B) Immunoblots 
for YAP1, IGF2BP3 and β-actin in Veh-treated or VP-treated Hep3B (2 or 10 µM). Representative blots are shown among three independent blots 
with similar results. The mean±SEM results of band densitometry of all blots are shown in online supplementary �gure S9. (C) Immuno�uorescence 
staining for YAP1 and IGF2BP3 (green) in Hep3B treated with Veh or VP (2 or 10 µM) for 24 hours. White-coloured arrows indicate the nuclear 
localisation of YAP1. Nuclei were counterstained with DAPI (blue). Representative images are shown. Scale bar=20 µm. (D) qRT-PCR analysis for let-
7a, c, e, f, g-5p in Veh-treated or VP-treated Hep3Bs. All qRT-PCR data are graphed as mean±SEM results from triplicate experiments (n=3 repeats/
group/time, *p<0.05, **p<0.005). (E) Immunoblots for AFP, SOX9, CCNE1, CCNB1 and β-actin in Veh-treated or VP-treated Hep3B. Representative 
blots are shown among three independent blots with similar results. The mean±SEM results of band densitometry for all blots are displayed in online 
supplementary �gure S9C. (F) Cell viability/proliferation was assessed by Cell Counting Kit-8 (CCK8) assay in Hep3B treated with either Veh or VP. 
The mean±SEM results are graphed (n=6 repeats/group/time, **p<0.005). (G) Sphere formation assay in Hep3B treated with Veh or VP (2 or 10 µM). 
The number and size of spheres were analysed after 14 days of culture. The mean±SEM�results from triplicate experiments are graphed (n=3 repeats/
group, **p<0.005). Representative images are shown. Upper panel: 40×�magni�cation; lower panel: 100×�magni�cation; scale bar=250 µm. 
Statistical signi�cance of all differences was assessed using two-tailed Student’s t-test. (H) Immunoblots for IGF2BP3, SOX9, CCNB1, YAP1, ESRP2 and 
β-actin in Hep3B treated with 2 µM of VP for 24 hours 1 day after treatment with either empty vector (Empty) or pDESTmycIGF2BP3 vector (IGF2BP3 
DNA). Representative blots are shown among three independent blots with similar results. The mean±SEM results of band densitometry for all blots 
are displayed, and statistical analysis was assessed using two-tailed Student’s t-test compared with empty vector-treated Hep3B (n=3 repeats/group, 
*p<0.05, **p<0.005). (I) Putative model of post-transcriptional mechanisms regulating the phenotype of adult hepatocytes by YAP1, ESRP2, let7 
and IGF2BP3.�DAPI, 4′,6-diamidino-2-phenylindole; DMSO, dimethyl sulfoxide; IGF2BP3,�Insulin-like growth factor-2 RNA-binding protein-3; qRT-
PCR,�quantitative reverse transcription-PCR; YAP1,�Yes-associated protein-1.� 
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RNA-binding protein and let7 miRs that follows a regenerative 
challenge has the predicted consequence, that is, de-differen-
tiation of adult hepatocytes to a more immature phenotype. 
These results have exciting clinical implications because they 
suggest that replenishing let7s might restore hepatocyte matu-
rity in failing livers, given that let7s inhibit IGF2BP3 and we 
showed that IGF2BP3 is a proximal effector of the fetal-like 
phenotype in hepatocytes. Appropriate evaluation of this issue 
will be challenging, but the strategy seems promising based on 
an earlier publication that reported that exogenous expression 
of let7 was sufficient to abrogate the growth of murine liver 
cancers that depend on stem-like IGF2BP3(+) tumour-initiating 
cells.44 Finally, we uncovered a previously unsuspected relation-
ship between YAP1 and the let7-IGF2BP3 axis. This discovery 
in adult hepatocytes may have broad implications because YAP1 
activation antagonises epithelial differentiation in many tissues, 
including the liver.20 45 46 In our studies, hepatocyte-specific 
deletion of Yap1 blocked both suppression of let7 and induc-
tion of IGF2BP3 and led to inhibited hepatocyte de-differen-
tiation and proliferation. Further, overexpressing IGF2BP3 in 
verteporfin-treated (YAP1-inactivated) hepatoblastoma cells 
restored the expression of YAP1 and YAP1-inducible genes that 
mark proliferative fetal-like cells (eg, SOX9, CCNB1) while 
suppressing the expression of ESRP2, an RNA splicing factor 
that typically inhibits YAP1, suppresses hepatocyte proliferation 
and promotes hepatocyte maturation at the end of liver develop-
ment.39 These novel results identify YAP1 as both a regulator and 
a target of the let7-IGF2BP3 axis and thus suggest that inhibiting 
YAP1 activation may be another approach to reverse hepatocyte 
de-differentiation and restore hepatic function in ALF.

In summary, effective regeneration of fully functional hepatic 
parenchyma following liver injury requires replacement of dead 
hepatocytes with healthy mature hepatocytes. This process 
necessitates precise regulation of hepatocyte plasticity so that 
progenitor populations are mobilised but also replenished. 
Loss of vital hepatocyte-specific functions, that is, liver failure, 
ensues when the process becomes biased to favour accumulation 
of immature hepatocytes. Mechanisms that programme cells to 
be stem-like/progenitor-cell like during fetal development are 
reactivated, and then silenced, in hepatocytes during effective 
regenerative responses. Manipulating the factors that drive fetal 
programming, including YAP1, IGF2BP3 and let7, is able to 
restrict accumulation of immature cells in injured livers, identi-
fying these factors and the pathways they regulate as novel ther-
apeutic targets to improve recovery from liver failure.

MATerIAlS AnD MeTHODS
experimental animal model
Male, adult C57BL/6J wild-type (WT) mice (Jackson Labora-
tory, Bar Harbor) (n=42) and Yap1flox/flox mice (from Dr Udayan 
Apte, University of Kansas) (n=21) underwent PH or sham 
surgery. Hepatocytes or livers were harvested 0, 24, 48, 72 or 
96 hours later. Male Yap1flox/flox mice were injected via the tail 
vein with 5×1011 genome equivalents of AAV8-TBG-Luc or 
AAV8-TBG-Cre (University of Pennsylvania Viral Vector Core) 
6 days before PH. Twelve additional WT mice were sacrificed 
0, 2, 4 or 7 days after a single injection of CCl4 (0.753 mL/kg 
dissolved in olive oil).47

Human liver samples
Formalin-fixed paraffin-embedded sections of the normal liver 
(n=1) and explanted livers of patients with ALF (n=8) were 

obtained from the Duke Pathology Archives and analysed with 
MetaMorph Software (Molecular Devices).

Statistics
Results are expressed as mean±SEM and analysed by two-tailed 
Student’s t-test or one-way analysis of variance, followed by a 
post-hoc Tukey’s test. Significant differences were p<0.05. All 
correlation analyses were analysed by Pearson’s correlation coef-
ficient (r).
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