Conclusions Our findings extend the application of rosiglitazone by demonstrating that it significantly inhibits the LPS induced inflammatory response in RAW264.7 macrophages via PPARγ activation and NF-κB suppression.

Background The dynamic changes of serum circRNAs, which act as a sponge of microRNA, has a great potential in predicting colonic disease, especially in malignant diseases. However, whether the mechanism of circRNA in regulating colonic epithelial mucosa is still unknown. Here, we explore the sponging effects of hsa_circ_0053063 targeting miR-361-3p in colon epithelial cells.

Methods According to the ceRNA analysis, the potential target miRNAs of hsa_circ_0053063 were collected. Dual-luciferase reporter gene assays were performed to confirm the circRNA sponge of miRNAs. Then the potential target gene of miR-361-3p was predicted. Dual-luciferase reporter gene assays and real-time PCR were performed to detect the regulation between ncRNAs and target gene in colon epithelial cells HCoEpiC and NCM460.

Results According to the ceRNA analysis, we found that miR-361-3p might be a target of hsa_circ_0053063 (figure 1a). Dual-luciferase reporter gene assays demonstrated that hsa_circ_0053063 bound miR-361-3p directly (figure 1b). Then we predicted that ATG13 was a target gene of miR-361-3p. Dual-luciferase reporter gene assays demonstrated that miR-361-3p bound ATG13 directly. Real-time PCR revealed that miR-361-3p decreased expression of ATG13; however, hsa_circ_0053063 reversed the inhibition of expression of ATG13 by miR-361-3p.

Conclusions Hsa_circ_0053063 released the inhibition of expression of ATG13 by miR-361-3p. hsa_circ_0053063 may act as a sponge of miR-361-3p targeting ATG13 in colon epithelial cell.

Background Colorectal cancer (CRC) is the third most common type of cancer in the world and is a major cause of worldwide cancer morbidity and mortality. Carboxylic acids widely exist in living systems and are the essential components for life, which mainly contain amino acids, TCA cycle intermediates, short-chain fatty acids, long chain fatty acids, bile acids, acylcarnitine, and so on. Carboxylomics study in biological samples is critical for the understanding of physiological processes and the discovery for the onset of relevant diseases.

Methods In the present study, DIAAA derivatization-UHPLC-Q-TOF/MS approach and carboxylomics study were employed to discover potential novel biomarkers for carboxylic acids in 58 human CRC and 46 healthy samples.

Results 269 carboxylic acids were determined and confirmed their structures. Among of them, 118 carboxylic acids were first reported in CRC serum. Metabolic pathways were constructed by heat maps, Interactive Pathways Explorer, pathway impact and Volcano plot, etc. Short-chain fatty acids were found to be novel diagnostic and prognostic biomarkers for CRC (IDDF2019-ABS-0090 Figure 2. Relative abundance (A) and ROC curves (B) of representative carboxylic acids profiled).
metabolites to differentiate CRC patients from healthy controls.

Conclusions Overall, using DIAAA derivatization-UHPLC-Q-TOF/MS based carboxylomics study combined with network and ROC curve analysis, a new set of metabolites can be discovered as biomarkers of diseases with diagnostic and prognostic capabilities.

Background The role of obesity in relation to cancer, particularly colorectal cancer (CRC) is still an enigma. Although the underlying inflammation in obesity may contribute to poor prognosis, little is known on how this affects the efficacy of the immune system. Exosomes are extracellular vesicles that function as messengers between different cells. We postulate that exosomes derived from obese cancer patients are likely to deliver immunosuppressive signals towards the immune system, thus reducing the anti-tumor immunity.

Methods We isolated exosomes from the serum of 4 sets of patients, obeseCRC (n=13), leanCRC (n=15), obesennonCRC (n=15) and leannonCRC (n=15). The exosomes isolated were characterized via immunoblotting, electron microscopy and DLS methods. We further isolated fresh PBMCs from healthy volunteers (n=4) and isolated CD8T cells using magnetic-bead based technique. Afterwards, the CD8T cells were activated and co-incubated with each of the isolated exosomes. Then, the apoptosis effects on CD8T cells were analyzed by annexin V assay, and the profile of related cytokines were determined.