CHARACTERIZATION OF CHI3L1 AS A POTENTIAL PLASMA BIOMARKER FOR ENDOSCOPIC RESECTABLE GASTRIC CANCER BY SWATH-MS AND TRANSCRIPTOME DATABASE ANALYSIS

Li Min*, Shengtao Zhu, Peng Li, Shutian Zhang. Beijing Friendship Hospital, Capital Medical University, China

Background

Early diagnosis of T1a gastric cancer (GC) provides patients opportunities for endoscopic minimally invasive resection, which avoids the trauma of surgery and improves quality of life. However, most recent biomarkers were discovered from early/advanced mixed GC patients, which showed limited potential in identifying endoscopic curable GC patients.

Methods

The overall study design was shown in figure 1A (figure 1A). Here we recruited 5 T1aN0M0 GC patients received endoscopic resection of GC and 5 age/sex-matched chronic superficial gastritis (CSG) controls. Plasma samples were collected before endoscopic resection or any other treatment. We used SWATH-MS proteomics to screen for up-regulated proteins in GC plasma, and the detailed workflow was shown in figure 1B (figure 1B). Then we identified differentially expressed genes (DEGs) of five GC datasets by GEO2R to construct a consensus list of up-regulated genes in GC. Overlapped secreted/membrane proteins between this consensus list and SWATH-MS up-regulated list were verified in an independent cohort by ELISA.

Results

We identified 37 up-regulated and 21 down-regulated proteins in GC plasma by SWATH-MS, which could well distinguish GC from CSG. Ten of those proteins were antibody fragments, which could not be mapped to a single gene. The rest 48 genes were associated with response to stress, extracellular space, and ion binding, according to GO analysis. For online database analysis, 174 genes were identified as DEGs in all those databases, but most of them were down-regulated. There were 94 genes up-regulated in at least 3 databases, and most of those genes were mutually associated in a PPI network. 58 of the 94 genes were secreted or membrane-associated, and only 1 gene, CHI3L1, was characterized as up-regulated in both the database consensus list and the SWATH-MS list. Finally, ELISA in an independent cohort (n=42) verified that CHI3L1 was significantly higher in the plasma of T1a GC than that of healthy controls (p<0.001).

Conclusions

We provide a novel strategy for biomarker screening combining recent MS technique with public database analysis, and identified plasma CHI3L1 as a potential biomarker for endoscopic resectable GC patients.

LACTOBACILLUS RHAMNOSUS GGSUPERNATANT IMPROVES BOWEL FUNCTION VIA UPREGULATING 5HT4R AND MUC2 EXPRESSION AND MODULATING MICROBE ENVIRONMENT IN MICE

Guoqiong Zhou*, Yu Gu, Kui Jiang, Bangmao Wang, Hailong Cao. Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China

Background

Lactobacillus rhamnosus GG (LGG) has been reported to improve bowel function in constipation patients.
However, the effects and mechanism of LGG on bowel function remains unclear. 5-Hydroxytryptamine4 Receptor is a critical receptor relating to the intestine motility and secretion function. In this study, we aimed to investigate whether LGG could improve the defecation function via upregulating 5-HT4R and modulating gut microbiota in mice.

Methods Male C57BL/6 mice 6–8 weeks in age were randomly divided into 3 groups: MRS group (n=10), Tegaserod group (positive control, n=15) and LGG group (n=15), and MRS broth, tegaserod maleate and LGG supernatant were gavaged respectively for 7 days. YAMC cells and Caco2 cells were used for experiment in vitro. Defecation parameter including the number of pellets in 2 hours, fecal weight, fecal dry weight, fecal water content, and the gastrointestinal transit time (GITT) were detected. PAS and AB-PAS staining were used to evaluate goblet cells number in mice colon, and 5-HT4R and MUC2 expression were determined Real-time PCR and Western blotting in vitro and in vivo. Gut microbiota and short-chain fatty acid were analyzed by 16 sRNA pyrosequencing technology. In conclusion, gut flora and human colon released an abundance of microbial proteins to the external environment possibly mediating various host-microbial reactions and responses in CRC.

IDDF2019-ABS-0303 METHYLATION PROFILES OF PHANTOM 5 ENHANCER AND OPEN CHROMATIN IN COLORECTAL CANCERS

1Muhiddin Ishak*, 1Najwa Farah Mohd Yusof, 1Sazuita Saidin, 1Isa Mohamed Rose, 2Luqman Mazlan, 3Jamal Sagap, 1Rahman Jamal, 1Nadiah Abu, 1Nurul Syakima Ab Mutallib. 1UKM Medical Molecular Biology Institute (UMBI), National University of Malaysia, Kuala Lumpur, Malaysia; 2Department of Pathology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia; 3Department of Surgery, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia; 4Department of Surgery, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia

Background Colorectal cancer (CRC) contributes around 1.36 million of the total cases worldwide and it has become evident over the past two decades that epigenetic alterations also play key roles in CRC pathogenesis. Majority of the research epigenetic alterations has examined the promoter regions, while other loci such including enhancers and open chromatin are not yet well described. Hence, this study aims to specifically profile the methylene of enhancers and open chromatin in CRC

Methods Genomic DNA and total RNA were extracted from cancer-adjacent normal colonic tissues and subjected to bisulfite conversion and cDNA synthesis, respectively. DNA methylation analysis was performed using Human Infinium Epic Beadchip Array which includes >23,000 enhancers and >461,000 open chromatin. Microarray data were analyzed using Genome Studio V1.8 and Bioconductor-ChAMP V2.8.1. The differentially methylated regions were validated via bisulfite conversion, cloning, and sequencing of individual clones. In order to correlate the effect of DNA methylation at the specific loci, the gene expression of the differentially methylated loci was analysed using quantitative real-time PCR

Results We identified 342 significantly differentially methylated enhancers and 2187 significant differentially methylated open chromatin. There were 192 hypermethylated and 150 hypomethylated enhancers compared to 1110 hypermethylated and 1076 hypomethylated open chromatin. Pathway enrichment...