MAPPING OF GUT MICROBIOME SECRETOME IN COLORECTAL CANCER: A MALAYSIAN DATA

1Siok-Fong Chin*, 1Putri Intan Hafizah Megat Mohd Azlan, 2Luqman Mazlan, 1Hui-min Neoh, 3Raja Affendi Raja Ali, 1Rahman Jamal. 1UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; 2Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; 3Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia

Background The human gut is home to trillions of gut flora that thrive in a delicate balance, which has helped maintain the host’s gut homeostasis and mutually benefited both parties tremendously. However, a drastic perturbation of microbial composition has hampered gut homeostasis initiating tumour microenvironment for the development of colorectal cancer (CRC). The objective of this study was to profile secreted proteins released from the human gut and microbial of CRC patients and control with healthy colon morphology by assessing the secretome in stool samples, using mass spectrometry technology.

Methods Stool samples from 26 CRC and 20 controls were collected, homogenized and filtered prior to protein extraction and analysis. Samples were subjected to in-solution digestion, followed by protein identification and quantification. Bioinformatics tools such as SPSS, MaxQuant and String were used for statistical analysis, data visualization, functional annotations and prediction of protein interactions and pathways.

Results We identified more human origin proteins in CRC as compared to control & inversely for proteins from microbial origin. The identified human exclusive proteins for CRC were mostly related to protein binding function and the top expressed proteins were mapped to Stage I and II CRC. The best prediction model was built upon the combination of human Huntingtin & RNA exomuclease 5 proteins. The model was sensitive but not specific in discriminating control from CRC. Meanwhile, the top annotated KEGG pathway for human CRC-exclusive proteins was Hypoxia-inducible factor-1 (HIF-1). In addition, yeast proteins were topping the microbial CRC-exclusive proteins list, with the predicted protein interactions mapped to DNA repair, transcription regulation & ATP binding.

Conclusions In conclusion, gut flora and human colon released an abundance of microbial proteins to the external environment possibly mediating various host-microbial reactions and responses in CRC.

IDDF2019-ABS-0303 METHYLATION PROFILES OF PHANTOM 5 ENHANCER AND OPEN CHROMATIN IN COLORECTAL CANCERS

1Muhammad Ishak*, 1Najwa Farah Mohd Yusof, 2Sazuita Saidin, 2Isa Mohamed Rose, 3Luqman Mazlan, 4Jamal Sagap, 5Rahman Jamal, 6Nadiah Abu, 7Nurul Syikima Ab Mutalib. 1UKM Medical Molecular Biology Institute (UMBI), National University of Malaysia, Kuala Lumpur, Malaysia; 2Department of Pathology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia; 3Department of Surgery, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia; 4Department of Surgery, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia

Background Colorectal cancer (CRC) contributes around 1.36 million of the total cases worldwide and it has become evident over the past two decades that epigenetic alterations also play key roles in CRC pathogenesis. Majority of the research epigenetic alterations has examined the promoter regions, while other loci such including enhancers and open chromatin are not yet well described. Hence, this study aims to specifically profile the methylene of enhancers and open chromatin in CRC

Methods Genomic DNA and total RNA were extracted from cancer-adjacent normal colonic tissues and subjected to bisulfite conversion and cDNA synthesis, respectively. DNA methylation analysis was performed using Human Infinium Epic Beadchip Array which includes >23,000 enhancers and >461,000 open chromatin. Microarray data were analyzed using Genome Studio V1.8 and Bioconductor-ChAMP V2.8.1. The differentially methylated regions were validated via bisulfite conversion, cloning, and sequencing of individual clones. In order to correlate the effect of DNA methylation at the specific loci, the gene expression of the differentially methylated loci was analysed using quantitative real-time PCR.

Results We identified 342 significantly differently methylated enhancers and 2187 significant differentially methylated open chromatin. There were 192 hypermethylated and 150 hypomethylated enhancers compared to 1110 hypermethylated and 1076 hypomethylated open chromatin. Pathway enrichment...
Non-coding RNAs (lncRNA) have been found to play important regulatory roles in cancer development and progression. However, functional lncRNAs and their downstream mechanisms remain largely unknown of oesophageal squamous cell carcinoma (OSCC) metastases. We aimed to identify lncRNAs that regulate OSCC metastases and investigate their downstream mechanisms.

Methods Small interfering RNA library was built from the top 50 overexpressed lncRNAs in OSCC according to TCGA database. Transwell migration assay was performed to identify the lncRNA that markedly affected cell migration. TMPO-AS1 expression was validated by qPCR in patient tissues and OSCC cell lines. Gain and loss of function of TMPO-AS1 were performed in transwell migration and invasion assays in vitro. Lung and lymph node metastases models were built with short hairpin RNA knockdown in vivo. RNA pull-down and RNAase protection assay (RPA) followed by qPCR analysis identified the RNA-RNA interaction. Downstream mechanisms were examined by regular molecular biological methods.

Results We identified TMPO-AS1 as a key regulator of OSCC metastases. TMPO-AS1 expression was upregulated in OSCC tumor tissues compared to adjacent normal tissues and positively correlated with the mRNA expression of TMPO (LAP2), its sense coding gene. Knockdown of TMPO-AS1 significantly inhibited OSCC cells migration and invasion in vitro and attenuated metastases in two different animal models in vivo. Overexpression of TMPO-AS1 showed contrary effects. RNA pull-down identified the interaction between TMPO-AS1 mRNA and LAP2α mRNA. RPA assay further confirmed TMPO-AS1’s protective effect on LAP2α mRNA. Western blotting found that knockdown of TMPO-AS1 decreased the expression of LAP2α without affecting LAP2β. Ectopic expression of LAP2α after TMPO-AS1 knockdown rescued the adverse effect on cell migration and invasion. By regulating the expression of its sense coding gene LAP2, TMPO-AS1 maintained the levels of LAP2α, which in turn activated Hedgehog signaling transcription factor GLI1 and its downstream target SNAIL, therefore promoting OSSC progression.

Conclusions TMPO-AS1 acts as an essential regulator in OSCC metastases by interacting with LAP2α mRNA and maintaining its levels, which activates the LAP2α-GLI1-SNAIL axis and facilitates OSSC metastases.

IDDF2019-ABS-0307

LONG NON-CODING RNA TMPO-AS1 REGULATES OESOPHAGAL SQUAMOUS CELL CARCINOMA METASTASES THROUGH ACTIVATING GLI1 BY MAINTAINING LAP2A EXPRESSION

Xiao-Jing Luo*, Jia Liu, Hui-Dong Liu, Rui-Hua Xu. State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China

10.1136/gutjnl-2019-IDDFabstracts.69

Background Long non-coding RNAs (lncRNA) have been found to play important regulatory roles in cancer development and progression. However, functional lncRNAs and their downstream mechanisms remain largely unknown of oesophageal squamous cell carcinoma (OSCC) metastases. We aimed to identify lncRNAs that regulate OSCC metastases and investigate their downstream mechanisms.

Methods Small interfering RNA library was built from the top 50 overexpressed lncRNAs in OSCC according to TCGA database. Transwell migration assay was performed to identify the lncRNA that markedly affected cell migration. TMPO-AS1 expression was validated by qPCR in patient tissues and OSCC cell lines. Gain and loss of function of TMPO-AS1 were performed in transwell migration and invasion assays in vitro. Lung and lymph node metastases models were built with short hairpin RNA knockdown in vivo. RNA pull-down and RNAase protection assay (RPA) followed by qPCR analysis identified the RNA-RNA interaction. Downstream mechanisms were examined by regular molecular biological methods.

Results We identified TMPO-AS1 as a key regulator of OSCC metastases. TMPO-AS1 expression was upregulated in OSCC tumor tissues compared to adjacent normal tissues and positively correlated with the mRNA expression of TMPO (LAP2), its sense coding gene. Knockdown of TMPO-AS1 significantly inhibited OSCC cells migration and invasion in vitro and attenuated metastases in two different animal models in vivo. Overexpression of TMPO-AS1 showed contrary effects. RNA pull-down identified the interaction between TMPO-AS1 mRNA and LAP2α mRNA. RPA assay further confirmed TMPO-AS1’s protective effect on LAP2α mRNA. Western blotting found that knockdown of TMPO-AS1 decreased the expression of LAP2α without affecting LAP2β. Ectopic expression of LAP2α after TMPO-AS1 knockdown rescued the adverse effect on cell migration and invasion. By regulating the expression of its sense coding gene LAP2, TMPO-AS1 maintained the levels of LAP2α, which in turn activated Hedgehog signaling transcription factor GLI1 and its downstream target SNAIL, therefore promoting OSSC progression.

Conclusions TMPO-AS1 acts as an essential regulator in OSCC metastases by interacting with LAP2α mRNA and maintaining its levels, which activates the LAP2α-GLI1-SNAIL axis and facilitates OSSC metastases.