Results The protein expression of VEGF was up-regulated in ICC tumour tissues than in matched normal tissues ($P<0.01$) (figure 1 A). Exogenous rhVEFG could promote the growth of Huh28 cells, suppressed cell apoptosis, without significant effect on cell proliferation ability (figure 1 B-D). The expression of phosphorylated VEGFR1 and VEGFR2 in Huh28 cells were up-regulated after rhVEGF treatment ($P<0.05$) (figure 1 E). VEGFR2 antibody could significantly reverse the anti-apoptosis effect of rhVEGF ($P<0.05$), while VEGFR1 antibody did not (figure 1 F). Subcutaneous tumour models indicated that tumour growth in the experimental group (Huh28-shVEGFR2) was significantly inhibited compared with the control group (Huh28-shNC) (figure 1 G).

Conclusions VEGF promotes ICC cells growth through inhibiting apoptosis of ICC cells in a VEGFR2-dependent signalling pathway.

Abstract IDDF2019-ABS-0128 Figure 1

Results The protein expression of VEGF was up-regulated in ICC tumour tissues than in matched normal tissues ($P<0.01$) (figure 1 A). Exogenous rhVEFG could promote the growth of Huh28 cells, suppressed cell apoptosis, without significant effect on cell proliferation ability (figure 1 B-D). The expression of phosphorylated VEGFR1 and VEGFR2 in Huh28 cells were up-regulated after rhVEGF treatment ($P<0.05$) (figure 1 E). VEGFR2 antibody could significantly reverse the anti-apoptosis effect of rhVEGF ($P<0.05$), while VEGFR1 antibody did not (figure 1 F). Subcutaneous tumour models indicated that tumour growth in the experimental group (Huh28-shVEGFR2) was significantly inhibited compared with the control group (Huh28-shNC) (figure 1 G).

Conclusions VEGF promotes ICC cells growth through inhibiting apoptosis of ICC cells in a VEGFR2-dependent signalling pathway.

Background Hepatocellular cancer occurred due to hepatocytes damage and inflammation. Interleukin as a pleiotropic cytokine in the immune system plays a pivotal role in the onset and progression of tumours. Emphasizing on approach to down-regulate the cytokines might be an effective boon for the treatment of hepatocellular carcinoma. *Madhuca longifolia* used as a traditional plant in the treatment of hepatocellular carcinoma. So focused on this scrutiny, we evaluate the therapeutic potential of the aqueous extract of *Madhuca longifolia* in Diethylnitrosamine induced hepatic cancer in Wistar albino rats.

Methods To determine the effect of aqueous extract of *Madhuca longifolia* leaf following Diethylnitrosamine exposure, the antioxidant activity was measured by the enzymatic and non-enzymatic antioxidants. In addition Proinflammatory cytokines and inflammatory mediators, namely TNF-a, IL-1b, IL-10 and NF-kb were also assessed.

Results The finding of the current study reveals that DEN treatment significantly downregulated the content of antioxidant parameter (SOD, catalase, GPx, GSH, G6PD and vitamin C) and upregulated the level of proinflammatory cytokines. Administration of aqueous extract of *Madhuca longifolia* attenuated the antioxidant parameter, cytokines and inflammatory mediators in rats.

Conclusions These study clearly highlight the chemopreventive prospective of *Madhuca longifolia* aqueous extract against DEN-induced Hepatic cancer by knockdown oxidative stress and inflammation.