through TNF-a inhibition. However, its benefit in acute pancreatitis in human remains unclear.

Subjects
To study clinical outcomes of pentoxifylline in APACHE II score in acute pancreatitis patients at 72 hours after treatment and to study the effects of pentoxifylline on inflammatory markers level.

Methods
54 acute pancreatitis patients with associated risk factors of severe pancreatitis development were evaluated for the severity of disease and inflammatory markers prior to treatment. Participants were allocated within 48 hours of diagnosis into pentoxifylline or control arm. The severity of disease, as well as inflammatory markers, were re-evaluated at 72 hours after treatment.

Results
Pentoxifylline did not decrease the severity of disease determined by a reduction in APACHE II score and a percent reduction of APACHE II compared with control group (0 Vs. 2; p-value = 0.27 and 0% reduction vs. 32% reduction; p-value =0.3, respectively). Interestingly, the incidence of the systemic inflammatory response syndrome (SIRS) after 72 hours of treatment was significantly lower than those without pentoxifylline. (7.7% Vs. 29.2%; p-value = 0.048)(table 1.). Noticeably in subgroup analysis, patients who enrollment time less than 24 hours after onset of symptoms show mean proinflammatory marker tended to respond to pentoxifylline group better than the control group.

Conclusions
Pentoxifylline seems to reduce the inflammatory process of the early phase of acute pancreatitis, particularly in patients presented within 24 hours of onset. However, the overall severity of the disease and clinical benefit was similar to the control group.

Abstract IDDF2019-ABS-0022 Table 1 Change in clinical scoring system and clinical outcome from baseline to day 3

<table>
<thead>
<tr>
<th>Clinical Scoring system*</th>
<th>Pentoxifylline(n=26)</th>
<th>Control(n=24)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>APACHE II score</td>
<td>0 (-5 to 14)</td>
<td>-2 (-7 to 14)</td>
<td>0.27</td>
</tr>
<tr>
<td>BISAP</td>
<td>0 (-2 to 2)</td>
<td>0 (-2 to 1)</td>
<td>0.91</td>
</tr>
<tr>
<td>SIRS</td>
<td>0 (-3 to 1)</td>
<td>0 (-3 to 1)</td>
<td>0.82</td>
</tr>
<tr>
<td>Presence of SIRS at day 3, n(%)**</td>
<td>2 (7.7%)</td>
<td>7 (29.2%)</td>
<td>0.048</td>
</tr>
<tr>
<td>Percentage change in APACHE II score</td>
<td>0 (-100 to 500)</td>
<td>-32 (-100 to 233.3)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Objectives
To provide clinical and demographic data of IBD among patients seen in our hospital.

Methods
Review of histopathology logbook and endoscopy reports of diagnosed cases of inflammatory bowel disease at the UERMMMC from 2012–2018.

Results
A total of 24 patients with a diagnosis of IBD were included. 15 patients have Crohn’s disease (62.5%) and 9 has Ulcerative Colitis (37.5%). An average of 2–3 patients was diagnosed every year with 5–6 new cases diagnosed over the last 2 years. The mean annual incidence was 1 new cases with more males than females (19 vs. 5). Mean age was 40 years old with bimodal peak in the age at presentation among 21–40 years old and 40–60 years old. Common symptoms included diarrhea (58.3%), abdominal pain (20.8%), lower GI bleeding (12.5%) and recurrent perianal fistula (8.3%). 2 cases were negative at the onset. 2 cases had MTB co-infection and 1 case with HIV co-infection but had a biopsy suggestive only for Crohn’s. 1 case had esophageal fistula. Of the UC cases, 90% had rectosigmoid colitis and 10% had pancolitis. Among CD, 60% had pure colitis, 35% had ileo-colitis and 5% had terminal ileitis.

Recommendations
IBD is an emerging disease. More males were affected with histology consistent with Crohn’s disease. Diarrhea remains to be the predominant symptom and it is very important to identify if there has been any co-existing infection like HIV and TB as this will greatly impact the treatment.