Abstracts

17,641 (5,120–42,895) (p=0.002)). There was no statistical difference in the non-POD group.

Transferrin was significantly lower in POD patients with HE (n=143) compared to those that never developed HE (n=93) (1.420 (1.100–1.720) vs. 1.670 (1.400–1.990) (p<0.001)). Levels were also significantly lower in the non-POD group (1.500 (1.085–1.945) vs. 1.985 (1.445–2.365) (p=0.007)).

Ferritin was significantly higher in POD patients with HE (n=146) compared to those who never developed HE (n=99). (24,828 (9,267–61,214) vs. 17,149 (3,153–37,994) (p=0.009)). There was no difference in the non-POD group.

No significant results were found when comparing circulating iron levels and transferrin saturations.

ROC curve analysis, however, showed that iron studies are poor at predicting survival in ALF. For example the area under the curve for transferrin to predict survival in POD patients was 0.662. To predict encephalopathy free course of disease in the same group of patients was 0.662. To predict encephalopathy free course of disease in the same group of patients was 0.662.

Conclusions

These data demonstrate that adiposity but not sarcopenia is associated with severity and predicts outcome of AH. Obesity should be recognised as a risk factor in patients with AH. Greater understanding of the interaction between alcohol and adipose tissue in AH may reveal new targets for treatment.

PTU-025 OBESITY IS ASSOCIATED WITH SEVERITY AND OUTCOME OF ALCOHOLIC HEPATITIS

1Prebahan Moodley*, 2Ashvin Dhardha. 1University Hospitals Plymouth NHS Trust, Plymouth, UK; 2University of Plymouth, Plymouth, UK

Introduction

Both sarcopenia and adiposity can influence the prognosis of patients with chronic liver disease. However, little is known of their interaction in patients with alcoholic hepatitis (AH). With the changing demographics of gender, age and body shape of AH patients, it is important to understand how obesity and sarcopenia affect AH severity and outcome. We aimed to determine whether quantity of skeletal muscle and adipose tissue influenced the outcome and severity of AH patients.

Methods

We studied a prospective single centre cohort of patients with severe AH, defined as recent onset jaundice (bilirubin>80 μmol/L) in heavy alcohol drinkers (>80g ethanol/day in males; >60g in females), AST:ALT>2 and discriminant function (DF)>32. Patients received standard medical nol/day in males; >60g in females), AST:ALT>2 and discriminant function (DF)>32. Patients received standard medical

No significant results were found when comparing circulating iron levels and transferrin saturations.

ROC curve analysis, however, showed that iron studies are poor at predicting survival in ALF. For example the area under the curve for transferrin to predict survival in POD patients was 0.662. To predict encephalopathy free course of disease in the same group of patients was 0.662.

Conclusions

These data demonstrate that adiposity but not sarcopenia is associated with severity and predicts outcome of AH. Obesity should be recognised as a risk factor in patients with AH. Greater understanding of the interaction between alcohol and adipose tissue in AH may reveal new targets for treatment.

PTU-026 EVIDENCE OF GUT-LIVER CROSSTALK AND GUT HOMEOSTASIS IN PARACETAMOL TOXICITY: IN VITRO STUDY USING IMPEDANCE-BASED ASSAY

1Katie Morgan*, 2Kay Samuel, 1Wesam Gamal, 1Steve Morley, 1Peter Hayes, 3Pierre Bagnaninch, 1John Pleuris, 1The University of Edinburgh, Edinburgh, UK; 2Scottish National Blood Transfusion Service, Edinburgh, UK; 3MRC Centre for Regenerative Medicine, Edinburgh, UK

Introduction

Drug induced liver injury accounts for approximately one half of all acute liver failure cases, with Paracetamol (APAP) being one of the most reported hepatotoxins [1]. We used an in vitro approach to model APAP transport from gut to liver where metabolic products (NAPQI) can cause hepatocellular damage. Investigating the mechanisms of a gut-liver axis in vitro may contribute to a better understanding of APAP toxicity.

Methods

The cellular impedance ECIS Z Θ platform was used to study the gut-liver axis and effects of APAP. Caco-2 and HepaRGs were seeded on separate 8W10+E ibidi arrays. The Caco-2 array was collagen coated. Step 1: Previously established concentrations of APAP [2] were applied to confluent Caco-2s (day 10), and impedance monitored for 24 hrs. Step 2: This ‘preconditioned’ culture medium was then transferred to HepaRGs (day 11) for 24 hrs. Step 3: preconditioned culture medium was then transferred from HepaRGs to fresh Caco-2s (day 12) for 24 hrs.

Results

Step 1: using an impedance based cellular assay, we show a tightening of barrier function in Caco-2s treated with 20 mM APAP. Step 2: only the highest concentration (20 mM APAP) shows substantial loss of impedance on hepatocytes. Step 3: we demonstrate that barrier function has become sensitized on Caco-2s with an increase in impedance at 10 mM APAP.

Discussion and Conclusions

This study demonstrates a potential cross-talk between hepatocytes and enterocytes and reveals a homeostatic effect of gut barrier function in presence of APAP. Exposing hepatocytes to toxic levels of APAP taken from Caco-2’s attenuates toxicity at 5 and 10 mM concentrations compared to previous study [2] where a dose-dependent loss of tight junctions was observed (5–20 mM APAP). Further exposure of preconditioned media on fresh Caco-2s (step 3) shows that tightening of barrier function is now achieved with lower APAP concentration (10 mM) to reduce absorption of APAP. It is possible a liver-gut axis regulates APAP absorption through paracrine signals, though more work is needed. This may differ between population phenotypes and potentially be responsible for variability of toxic response in patients with APAP overdose.