Background Currently, there are only guidelines for wider HIV screening. Other blood-borne virus (BBV) screening is targeted to ‘at risk’ populations despite high prevalence in recent studies1.

The NHS provides approximately 110 million urgent same-day patient contacts annually including those seen in Urgent Care Centres (UCC)2. UCCs provide access to less defined day patient contacts annually including those seen in Urgent

1) Reporting BBV prevalence in an urban UCC;
2) Assessing linkage-to-care of positive patients;
3) Assessing acceptability of DBS testing instead of phlebotomy.

Method A 9 week prospective study was performed at the UCC at Charing Cross Hospital (March-May 2018). Consent-ing patients were recruited according to the inclusion criteria and tested with DBS test kits for HIV1/HIV2-Ab, HbsAg and HCV-Ab. Demographics and test results were recorded. Positive patients were referred to respective specialist centres and linkage-to-care rates were measured. Ethical approval was granted (58.5%). Mean age 39.8 (±15.95). Seventeen abnormal DBS results (4.3%): HIV 11.8%; HBV 5.9%; HCV 82.3%; Males 64.7%; females 35.3%; UK-born 47.1%.

Nine patients (52.9%) had confirmatory PCR (HIV 2; HBC 1; HCV 6). Four false positives were identified (HCV-Ag only). Active BBV prevalence was 0.8%. There was no statistically significant association between BBV risk, gender, age, ethnicity and place of birth. 76.5% were successfully linked to care.

Conclusion This is the first study reporting BBV screening in the UCC. With over 50% participation; active prevalence of 0.8% and excellent linkage-to-care, there is a role for DBS screening in the UCC; assisting WHO’s goal to eliminate viral hepatitis and HIV by 20301.

There were false positive results for HCV-Ag in contrast to previous studies. True prevalence was lower than expected possibly due to the sample size, selection bias and the opt-in nature of the study. Further studies will need to focus on the cost-effectiveness of routine testing.

REFERENCES

PTU-027 DRIED BLOOD SPOT BLOOD-BORNE VIRUS SCREENING AND LINKAGE TO CARE IN AN URGENT CARE CENTRE

1 C Nwogu*, 2 N Wong, 2 Z Mohamed, 2 S Douglass, 2 C Simpangwe, 1 A Brown, 1 Hepatology Department, Imperial College Healthcare NHS Trust, London, UK; 2 Central and West Unscheduled Care Collaborative, London, UK; 3 Emergency Department, Imperial College Healthcare NHS Trust, London, UK

Background and aims Excess liver iron content is common, affecting approximately 10% of the population, and observationally associates with hepatic and extrahepatic diseases such as liver fibrosis, hepatocellular carcinoma and metabolic syndrome1. Genome wide association studies (GWAS) on MRI determined liver iron content, compared to circulating iron traits, permit detection of liver-specific susceptibility loci. Here we aim to find genetic variants influencing liver iron content, using data from UK Biobank.

Methods Data was acquired from UK Biobank (application 9914). Liver phenotypes were calculated from MRI data by trained analysts using LiverMultiScanTM. We used GEMMA to perform a GWAS of MRI scan measures of liver iron in 8,289 individuals of European ancestry. We adjusted for age, sex, BMI, genotyping array, and population structure.

Results We identified three independent genetic variants (rs1800562 & rs1799945 in HFE, rs855791 in TMPRSS6) associated with liver iron content at genome-wide significance (p < 5x10^-8). These variants have been reported previously to be associated with blood markers of iron levels. Mendelian randomisation analysis provided evidence that higher central adiposity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated that liver iron increasing alleles in HFE were also associated with high blood pressure, liver cirrhosis, hepatic and extrahepatic malignancies, neuro-psychiatric, endocrine and rheumatological conditions, but inversely associated with LDL cholesterol, heart disease and gallbladder diseases. The liver iron increasing allele in TMPRSS6 was inversely associated with lipidaemias and ischaemic heart disease.