Colon and Anorectum Orals

OTH-08

CIRCULATING MICRORNAS LINKED TO IMMUNOMETABOLIC TRAITS ASSOCIATE WITH FAECAL MICROBIOTA TRANSPLANTATION FOR CLOSTRODIIOIDES DIFFICILE INFECTION

1Tanya Monaghan*, 2Tahseen Jilani, 3Marcin Frankowski, 4Odette Pomenya, 4Tung On Yau, 5Niki Christodoulou, 6Maria Hatzapostolou, 7Iwona Wojcik, 8Maja Pucic-Bakovic, 9Franjo Vuckovic, 9Thomas Louie, 6Gordan Lauc, 7Dina Kao, 4Christos Polytarchou. 1NIHR Nottingham Digestive Diseases Biomedical Research Centre, University Of Nottingham, Nottingham, UK; 2School of Computer Science, University of Nottingham, Nottingham, UK; 3Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland; 4Department of Biosciences, John van Geest Cancer Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK; 5Genos Glycoscience Research Laboratory, Zagreb, Croatia; 6University of Calgary, Calgary, Canada; 7University of Alberta, Edmonton, Canada

Introduction The molecular mechanisms underlying successful faecal microbiota transplantation (FMT) for recurrent *C. difficile* infection (rCDI) remain poorly understood. The aim of this study was to characterise alterations in circulating microRNAs and immunometabolic traits following FMT for rCDI.

Methods We analysed a subset of serum samples previously acquired from a prospective multicentre, randomized trial of FMT delivered by capsule vs colonoscopy in the management of rCDI [NCT02254811]. 126 sera from 42 patients at screening, 4 and 12 weeks post FMT [12M, median age 68.5 yrs (2–72); 30 F, 53 yrs (2–164)] were included. MicroRNA panel v3 and the nCounter platform (Nanostring Tech) were used for the analysis of 800 microRNAs. Quantitative PCR and 3'UTR reporter assays were employed to verify microRNA inflammatory protein targets in colonic epithelial and peripheral blood mononuclear cells. Biometal levels were assessed using inductively coupled plasma mass spectrometry (ICP-MS). Hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) and nano-liquid chromatography coupled with electrospray mass spectrometry (nanoLC-ESI-MS) were utilised to profile the total serum and IgG Fc N-glycome. Pathway analysis was performed using Metacore software. All statistical analyses including non-parametric longitudinal method (nparLD) followed by Wilcoxon signed-rank test for pairwise comparisons and linear mixed modelling were performed in SPSS v.24 and R 3.5.1.

Results MicroRNA profiling revealed an upregulation in the levels of 64 circulating microRNAs 4 and 12 weeks following successful FMT for rCDI compared to screening time point. MicroRNA signatures coincide with a reduction in circulating selenium and copper, and regulate levels of interleukin-12B, IL-18 and fibroblast growth factor-21 (FGF21) as well as serum protein N-glycosylation traits. MicroRNA alterations reveal commonalities with several types of cancer and multiple sclerosis, and link metabolic traits to immune cell survival and differentiation.

Conclusions These findings contribute to a greater understanding of the molecular mechanisms underlying FMT and identify new potential targets for therapeutic intervention.

OTH-09

FERROUS SULPHATE SUPPLEMENTATION IS ASSOCIATED WITH A CHANGE IN THE FAECAL METABOLOME

1Ammar Ahmed, 2Rachael Hough, 3Stephen Lewis, 4Chris Probert*. 1School of Medicine, University of Liverpool, Liverpool, UK; 2Gastroenterology Department, University Hospitals Plymouth NHS Trust, Plymouth, UK; 3Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, UK

Introduction Oral iron supplementation treats iron deficiency anaemia, but it may cause GI side effects. Iron influences the growth of specific gut bacteria and may lead to dysbiosis, which may contribute to the side effects. Previously, we have shown that oral iron worsens colitis in mice and causes a dysbiosis. Here we report the effect of ferrous sulphate supplementation on the human metabolome by quantifying changes in faecal volatile organic compounds (VOCs), for the first time. VOCs are part of the metabolome and reflect gut

Abstract OTH-09 Figure 1 (A) Pre- and post-iron (Fe) concentrations of 2-pentylfuran. (B) Partial least squares – discriminant analysis (PLS-DA) plot of pre- and post-iron samples.
bacterial metabolism. We aimed to compare the faecal metabolome before and after ferrous sulphate supplementation.

Methods 77 faecal samples were collected from patients with iron deficiency anaemia, before treatment and after two months of therapy. Faecal headspace gases were analysed using gas chromatography–mass spectrometry: VOC identification involved matching mass spectra against the NIST Library. Univariate and multivariate analysis was performed on the VOCs found, including partial least squares regression (PLS-DA).

Results A significant change in abundance of 17 VOCs was found. Adjustment was made for the number of comparisons: one VOC was then shown to increase significantly. The median abundance of 2-pentylfuran changed four-fold (FDR adjusted $P = 0.006$) in patients taking ferrous sulphate for two months (Fig. 1A). Overall, a plot to illustrate the PLS-DA shows how the pre- and post-treatment samples differ (Fig. 1B). Though the abundance changed in 16 other VOCs—which included aldehydes, esters and ketones—their significance was lost after correction for multiple testing, which indicates that the study may be underpowered.

Conclusions The abundance of faecal 2-pentylfuran increases significantly during ferrous sulphate therapy. 2-pentylfuran is a metabolite of fungi. It remains to be seen whether ferrous sulphate directly acts on fungi or whether there is an interaction between iron and bacteria, and then between bacteria and fungi. It is very clear that faecal metabolites are influenced by ferrous sulphate supplementation.

Abstract OWE-22 Figure 1

Conclusions These findings suggest that EU guidelines for surveillance colonoscopies for > 3 small LGD polyps are excessively strict. We propose extending the time for a repeat colonoscopy FU for these patients to 3 yrs.

REFERENCES

OWE-23 VERSATILE ROLE OF SECRETED FRIZZLED RELATED PROTEIN 2 (SFRP2) IN COLON CANCER: POTENTIAL STROMAL TARGET

Introduction Dysfunctional adipose tissue has emerged as a key contributor to colorectal cancer. However, the role of peritumoral adipose tissue (pAT) in colon cancer has not been widely investigated. Aim of this study is to identify differentially expressed genes (DEGs) associated with cancer pathways in peritumoral adipose tissue compared with adjacent normal adipose tissue in human colon cancer.

Methods Fresh peritumoral and distal adipose tissue samples were collected from 6 patients undergoing surgery for colon cancer stage T3/T4. DEGs were identified employing Nanostring PanCancer Pathway Panel including 770 cancer-associated genes. Criteria for differential expression included p-value