Adaptations to the British Society of Gastroenterology guidelines on the management of acute severe UC in the context of the COVID-19 pandemic: a RAND appropriateness panel

ABSTRACT

Objective Management of acute severe UC (ASUC) during the novel COVID-19 pandemic presents significant challenges. We aimed to provide COVID-19-specific guidance using current British Society of Gastroenterology (BSG) guidelines as a reference point.

Design We convened a RAND appropriateness panel comprising 14 gastroenterologists and an IBD nurse consultant supplemented by surgical and COVID-19 experts. Panellists rated the appropriateness of interventions for ASUC in the context of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Median scores and disagreement index (DI) were calculated. Results were discussed at a moderated meeting prior to a second survey.

Results Panellists recommended that patients with ASUC should be isolated throughout their hospital stay and should have a SARS-CoV-2 swab performed on admission. Patients with a positive swab should be discussed with COVID-19 specialists. As per BSG guidance, intravenous hydrocortisone was considered appropriate as initial management; only in patients with COVID-19 pneumonia was its use deemed uncertain. In patients requiring rescue therapy, infliximab with continuing steroids was recommended. Delaying colectomy because of COVID-19 was deemed inappropriate. Steroid tapering as per BSG guidance was deemed appropriate for all patients apart from those with COVID-19 pneumonia in whom a 4–6-week taper was preferred. Post-ASUC maintenance therapy was dependent on SARS-CoV-2 status but, in general, biologics were more likely to be deemed appropriate than azathioprine or tofacitinib. Panellists deemed prophylactic anticoagulation postdischarge to be appropriate in patients with a positive SARS-CoV-2 swab.

Significance of this study

What is already known on this subject?

The British Society of Gastroenterology (BSG) has published evidence-based guidelines for the management of patients with acute severe UC (ASUC), but it is unknown whether these are appropriate in the setting of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection.

What are the new findings?

The current BSG IBD guidelines provide a management pathway which remains largely appropriate during the COVID-19 pandemic.

In patients with established COVID-19 pneumonia.

It is appropriate to involve COVID-19 specialists in decision-making for patients with ASUC who are SARS-CoV-2 positive.

Steroid tapering as per BSG guidance was deemed appropriate for all patients apart from those with COVID-19 pneumonia in whom a 4–6-week taper was preferred.

Prophylactic anticoagulation postdischarge is appropriate in patients with a positive SARS-CoV-2 swab.
Acute severe UC (ASUC) occurs in up to 25% of patients with UC and is associated with a mortality of approximately 1%. The management of ASUC is particularly challenging in the context of SARS-CoV-2 as the typical presenting features of ASUC, namely diarrhoea with raised inflammatory markers, often in association with a fever, may mimic those of COVID-19. ASUC is managed with high-dose parenteral corticosteroids, progressing to rescue therapy and/or surgery in those who fail to respond adequately. Neither an effective medical therapy nor a vaccine has yet been described, although numerous candidates are under evaluation.

Acute severe UC (ASUC) occurs in up to 25% of patients with UC and is associated with a mortality of approximately 1%. The management of ASUC is particularly challenging in the context of SARS-CoV-2 as the typical presenting features of ASUC, namely diarrhoea with raised inflammatory markers, often in association with a fever, may mimic those of COVID-19. ASUC is managed with high-dose parenteral corticosteroids, progressing to rescue therapy and/or surgery in those who fail to respond adequately. Neither an effective medical therapy nor a vaccine has yet been described, although numerous candidates are under evaluation.

Acute severe UC (ASUC) occurs in up to 25% of patients with UC and is associated with a mortality of approximately 1%. The management of ASUC is particularly challenging in the context of SARS-CoV-2 as the typical presenting features of ASUC, namely diarrhoea with raised inflammatory markers, often in association with a fever, may mimic those of COVID-19. ASUC is managed with high-dose parenteral corticosteroids, progressing to rescue therapy and/or surgery in those who fail to respond adequately. Neither an effective medical therapy nor a vaccine has yet been described, although numerous candidates are under evaluation.

Acute severe UC (ASUC) occurs in up to 25% of patients with UC and is associated with a mortality of approximately 1%. The management of ASUC is particularly challenging in the context of SARS-CoV-2 as the typical presenting features of ASUC, namely diarrhoea with raised inflammatory markers, often in association with a fever, may mimic those of COVID-19. ASUC is managed with high-dose parenteral corticosteroids, progressing to rescue therapy and/or surgery in those who fail to respond adequately. Neither an effective medical therapy nor a vaccine has yet been described, although numerous candidates are under evaluation.

Acute severe UC (ASUC) occurs in up to 25% of patients with UC and is associated with a mortality of approximately 1%. The management of ASUC is particularly challenging in the context of SARS-CoV-2 as the typical presenting features of ASUC, namely diarrhoea with raised inflammatory markers, often in association with a fever, may mimic those of COVID-19. ASUC is managed with high-dose parenteral corticosteroids, progressing to rescue therapy and/or surgery in those who fail to respond adequately. Neither an effective medical therapy nor a vaccine has yet been described, although numerous candidates are under evaluation.
Figure 1 5-Adaptations to the BSG guideline for the management of ASUC in the context of COVID-19. ASUC as defined by Truelove and Witt Criteria. 6-BSG guidelines for standard recommendations. 7-See BSG guidelines for standard recommendations. 8-At the time of admission, the appropriateness of CT chest is uncertain and CT abdomen inappropriate. 9-If not performed on admission, sigmoidoscopy should be arranged prior to treatment escalation or colectomy. 10-Requires complete loading of infliximab - Accelerated dosing: Repeat infliximab 5mg/kg for 3-5 additional days. 11-At the time of admission, the appropriateness of routine CT chest is uncertain and routine CT abdomen inappropriate. 12-Requires complete loading and commence maintenance. 13-If not, consider initiation of biologic therapy. 14-If not already taking. 15-Discharge if no worsening after at least 24h on oral therapy. 16-If patients with SARS-CoV-2 pneumonia: an accelerated taper over 4-6 weeks was considered appropriate and a standard taper uncertain. 17-In SARS-CoV-2 negative or SARS-CoV-2 positive patients without pneumonia: consider anti-TNF, vedolizumab or ustekinumab at or soon after discharge. 18-In SARS-CoV-2 pneumonia the appropriateness of these agents are uncertain.
Inflammatory bowel disease

Table 1 Appropriateness of patient isolation and investigation in patients admitted with acute severe UC in the context of the COVID-19 pandemic

<table>
<thead>
<tr>
<th>Inpatient isolation</th>
<th>On admission</th>
<th>Prior to rescue therapy</th>
<th>Prior to colectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARS-CoV-2 swab</td>
<td>All patients</td>
<td>Repeat swab if initial swab negative</td>
<td>Repeat swab if initial swab negative</td>
</tr>
<tr>
<td>Flexible sigmoidoscopy</td>
<td>≤24-hour admission</td>
<td>If not performed</td>
<td>If not performed</td>
</tr>
<tr>
<td>CT chest</td>
<td>Performed in all patients</td>
<td>Performed in all patients</td>
<td>Performed in all patients</td>
</tr>
<tr>
<td>CT abdomen and pelvis</td>
<td>Performed in all patients</td>
<td>Performed in all patients</td>
<td>Performed in all patients</td>
</tr>
</tbody>
</table>

Green is considered appropriate, yellow uncertain and red inappropriate. SARS-CoV-2, severe acute respiratory syndrome coronavirus-2.

(JG), intensive care (MG), respiratory medicine (FC) and infectious diseases (AU). In practice, several specialities may provide expert opinion in COVID-19 management, including intensivists, respiratory physicians and infectious disease physicians. We, therefore, used the encompassing term ‘COVID-19 specialist’ to represent this group. Finally, the Chairs of the BSG IBD Section Committee (IA) and the BSG IBD CRG (CAL) were also present. The moderators (PMI, MAS) neither expressed opinions on management nor voted, but were experts both in RAND panels and in the management of IBD. After the meeting, a second online survey comprising 91 questions, which had been slightly modified from the initial questionnaire following discussion at the meeting, was circulated for completion.

Several assumptions were made for clarity. First, patients were assumed to have a confirmed diagnosis of UC with intercurrent gastrointestinal infection having been excluded. Second, if this was not an index presentation, patients were assumed to have received optimised 5-aminosalicylic acid therapy prior to admission and were also presumed to be biological-naive. In addition, where ciclosporin was suggested as an option, it was assumed that the patient was thiopurine-naive. Third, other than those areas addressed in the survey, the management of ASUC was assumed to be in line with BSG guidance. Finally, where steroid weaning or discontinuation was considered, it was assumed that patients could safely stop steroids without the risk of Addisonian crisis.

In addition, in the section about first-line medical therapy, panelists assumed patients were not steroid refractory. For the rescue therapy section, patients were assumed to have ongoing ASUC despite 3 days of intravenous corticosteroid therapy and had reached standard criteria for rescue therapy. For the continuing medical therapy section, patients were assumed to have responded to intravenous corticosteroids sufficiently to switch to oral prednisolone and were ready to be discharged from hospital. Lastly, as per RAND methodology, respondents were advised to make decisions without considering local availability of treatments or cost.

Analysis

For each scenario, median scores were calculated with a score of <3.5 being considered inappropriate, ≥3.5 but <6.5 uncertain and ≥6.5 appropriate. We used the validated RAND disagreement index (DI) to define disagreement among panelists using the equation outlined below. A DI ≥1 denotes disagreement. Any scenario in which disagreement was found was scored as uncertain, regardless of the median score.

\[
\text{DI} = \frac{70\text{th percentile} - 30\text{th percentile}}{2.35 + (1.5 \times \text{abs}(S - 30\text{th percentile}))}
\]

RESULTS

Overall results

Of the 91 clinical scenarios, panelists rated 28 as appropriate, 19 as uncertain and 44 as inappropriate. After the second round of voting, agreement was present for all scenarios (DI<1). The key findings are summarised below and their relationship to current BSG guidance is highlighted in figure 1. A detailed list of all scenarios, complete with median score, appropriateness rating and DI can be found in online supplementary table 2.

Indications for investigations, inpatient isolation and specialist referral

The panelists agreed that all patients admitted to hospital with ASUC should have a SARS-CoV-2 swab performed on admission. If the result was negative it was deemed appropriate to repeat the swab at the point of requiring rescue therapy and/or surgery to exclude subclinical infection. It was also considered appropriate to isolate all patients throughout their hospital stay, irrespective of their COVID-19 status (table 1).

It was rated appropriate to perform a flexible sigmoidoscopy within 24 hours of admission. If a patient had not had a flexible sigmoidoscopy on admission, it was considered appropriate that one should be performed prior to rescue therapy or colectomy. Repeating this test at these time points was deemed unnecessary in patients who had already had a flexible sigmoidoscopy performed.

Routine CT scanning of the abdomen/pelvis on admission (in addition to abdominal X-ray) was deemed inappropriate. However, the appropriateness of routine chest CT on admission was rated as uncertain. The one scenario in which a CT scan of the chest was felt to be appropriate for all patients irrespective of COVID-19 status was in the context of patients requiring colectomy.

Throughout the scenarios, the panelists considered the appropriateness of discussion with COVID-19 specialists. In patients without symptoms or signs of COVID-19 and with a negative swab, this was deemed inappropriate if receiving first-line therapy but uncertain in patients requiring rescue therapy. However, it was considered appropriate in all patients with a positive swab, irrespective of the presence of symptoms or signs of COVID-19.

Initial treatment of ASUC

As per BSG guidance, intravenous hydrocortisone, 100 mg, four times per day (or equivalent) was rated appropriate as the initial management of patients presenting with ASUC in the absence of symptoms and signs of COVID-19 pneumonia. In patients with COVID-19 pneumonia, use of hydrocortisone was deemed uncertain. Other possible treatments (poorly bioavailable oral steroids, for example, budesonide multidose and beclometasone modified release, infliximab either with or without steroids, ciclosporin or tofacitinib) were considered inappropriate. The exception was infliximab (without steroids) which was considered uncertain in patients with a positive swab for SARS-CoV-2, either with or without signs of COVID-19 pneumonia. Ambulatory outpatient management with daily intravenous methylprednisolone was rated as inappropriate in all patients with ASUC regardless of SARS-CoV-2 status, as was management by immediate colectomy unless complications mandating emergency surgery
were present such as toxic megacolon, perforation or severe haemorrhage (table 2).

Rescue therapy

In patients meeting criteria for escalation of management at day 3, it was considered inappropriate to avoid rescue therapy by continuing monotherapy with intravenous corticosteroids, irrespective of COVID-19 status. Instead, the panelists deemed that following standard BSG guidance by initiating infliximab and continuing steroids was appropriate, whereas treatment with infliximab in conjunction with immediate steroid withdrawal was deemed uncertain. The BSG guidelines also recommend ciclosporin as an alternative rescue therapy. However, the RAND panel voted that ciclosporin, either with or without ongoing steroids, was inappropriate in all scenarios other than in patients with a negative SARS-CoV-2 swab in whom it was rated uncertain. Finally, colectomy without rescue therapy was deemed inappropriate in all the scenarios considered by the panel. However, one colectomy became necessary, for example where rescue therapy had failed or when complications had occurred, it was deemed inappropriate to delay surgery, even in patients with COVID-19 pneumonia (table 3).

Continuing medical therapy

The ongoing management of patients who had responded to intravenous corticosteroids and were ready for discharge on oral steroids was also considered. In patients with a negative SARS-CoV-2 swab, or with a positive swab but without signs or symptoms of pneumonia, steroid tapering over 6–8 weeks as per BSG guidance was deemed appropriate. However, in patients with COVID-19 pneumonia it was rated uncertain. Accelerated steroid withdrawal over 4–6 weeks was rated appropriate regardless of COVID-19 status. More rapid withdrawal over 4 weeks was deemed inappropriate except in patients with COVID-19 pneumonia, in whom it was rated uncertain. The use of poorly bioavailable oral steroids as an alternative to a standard steroid taper was rated as inappropriate in all scenarios (table 4).

Initiation of additional therapy prior to or soon after discharge to prevent relapse was also considered. Following BSG guidance by initiating a thiopurine was rated uncertain in SARS-CoV-2 swab-negative patients and inappropriate in swab-positive patients. Use of biological therapy (anti-tumour necrosis factor (TNF), ustekinumab or vedolizumab) was deemed appropriate in swab-negative patients. In all other patients, the appropriateness of biological therapy was uncertain, except for anti-TNF therapy in patients with a positive swab but without pneumonia in whom treatment was rated as appropriate. Tofacitinib was generally rated as inappropriate except in swab-negative patients in whom it was rated uncertain.

Finally, panellists were asked whether patients should be discharged with a period of ongoing prophylactic anticoagulation. This was deemed appropriate in patients who had a positive SARS-CoV-2 swab regardless of whether they had pneumonia but was rated uncertain in those who had negative swabs.

DISCUSSION

General considerations

The recent International Organisation For the Study of Inflammatory Bowel Disease RAND appropriateness panel addressing the use of medications to treat IBD in the COVID-19 era did not specifically address the management of patients with ASUC.7 To date, there has been no consensus on how to manage this condition during the COVID-19 pandemic; in the context of a limited, although rapidly evolving evidence base, this is perhaps unsurprising.

Thus, there is an urgent need for guidance on how...
Inflammatory bowel disease

Table 4 Appropriateness of treatment options in acute severe UC in the context of the COVID-19 pandemic: continuing medical therapy

<table>
<thead>
<tr>
<th>Negative SARS-CoV-2 swab WITHOUT respiratory symptoms</th>
<th>Positive SARS-CoV-2 swab WITHOUT respiratory symptoms or signs of COVID-19 pneumonia</th>
<th>Positive SARS-CoV-2 swab WITH symptoms or signs of COVID-19 pneumonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard steroid taper</td>
<td>Accelerated steroid taper <4 weeks</td>
<td>Accelerated steroid taper <4 weeks</td>
</tr>
<tr>
<td>Accelerated steroid taper 4–6 weeks</td>
<td>Poorly bioavailable steroid†</td>
<td>Poorly bioavailable steroid†</td>
</tr>
<tr>
<td>Anti-TNF†</td>
<td>Thiomurine†</td>
<td>Thiomurine†</td>
</tr>
<tr>
<td>Vedolizumab†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thromboprophylaxis§</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Green is considered appropriate, yellow uncertain and red inappropriate.

*Patient has responded to intravenous steroid therapy.
†Steroid taper and start additional therapy at or soon after discharge.
‡Switch from corticosteroids to budesonide MMX 9 mg daily/beclometasone 5 mg daily.
§Continue for a period after discharge.

MMX, multimatrix; TNF, tumour necrosis factor.

best to manage ASUC in the current setting. Several areas need consideration in this regard including: the effect of SARS-CoV-2 on the activity and course of IBD; the effect of IBD and its activity on the risk of being infected with SARS-CoV-2 and the progression to COVID-19; the interaction of SARS-CoV-2/COVID-19 with the drugs used to treat IBD; and the possible effects of treatments for COVID-19 on IBD.

SARS-CoV-2 is found in the gut and RNA is measurable in the stool significantly longer than in serum or respiratory samples, although the significance of this is unclear. The effects of the virus on the intestinal mucosa remain undefined, as does its interaction with inflamed tissue. Gastrointestinal symptoms including diarrhoea occur in around 30% of patients and have been associated with worse outcome, and a single report describes a possible case of COVID-19 colitis.

Currently, it is not clear whether IBD-specific factors lead to worse outcomes in patients who develop COVID-19. In the Italian series of 79 patients with IBD and COVID-19, active disease was associated with the risk of COVID-19 pneumonia even after controlling for other risk factors. Furthermore, active IBD was also significantly associated with increased hospitalisation, the need for respiratory support and death. In contrast, in Bergamo, Northern Italy, an observational study reported no cases of COVID-19 in 522 patients with IBD.

While there are data that suggest that active IBD increases the risk of some viral infections, it is difficult to draw firm conclusions with regard to SARS-CoV-2 infection given the limited data available.

Of concern to most clinicians caring for patients with IBD is the possible risk of the drugs used to manage ASUC in the context of the COVID-19 pandemic. Intravenous corticosteroids remain the most widely used induction therapy in the context of the COVID-19 pandemic. Intravenous corticosteroids are known to increase the risk of sepsis and respiratory failure. 19 Gastrointestinal symptoms including diarrhoea occur in around 30% of patients and have been associated with worse outcome.

Table 4 Appropriateness of treatment options in acute severe UC in the context of the COVID-19 pandemic: continuing medical therapy

<table>
<thead>
<tr>
<th>Negative SARS-CoV-2 swab WITHOUT respiratory symptoms</th>
<th>Positive SARS-CoV-2 swab WITHOUT respiratory symptoms or signs of COVID-19 pneumonia</th>
<th>Positive SARS-CoV-2 swab WITH symptoms or signs of COVID-19 pneumonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard steroid taper</td>
<td>Accelerated steroid taper <4 weeks</td>
<td>Accelerated steroid taper <4 weeks</td>
</tr>
<tr>
<td>Accelerated steroid taper 4–6 weeks</td>
<td>Poorly bioavailable steroid†</td>
<td>Poorly bioavailable steroid†</td>
</tr>
<tr>
<td>Anti-TNF†</td>
<td>Thiomurine†</td>
<td>Thiomurine†</td>
</tr>
<tr>
<td>Vedolizumab†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thromboprophylaxis§</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Green is considered appropriate, yellow uncertain and red inappropriate.

*Patient has responded to intravenous steroid therapy.
†Steroid taper and start additional therapy at or soon after discharge.
‡Switch from corticosteroids to budesonide MMX 9 mg daily/beclometasone 5 mg daily.
§Continue for a period after discharge.

MMX, multimatrix; TNF, tumour necrosis factor.

Finally, it is important to consider the possible effects of drugs used to manage COVID-19 on IBD. For example, interleukin 6 inhibitors are being tested in patients with COVID-19 (ClinicalTrials.gov Identifier: NCT04315298) but have been associated with intestinal perforation in IBD.

We used an established methodology, a RAND appropriateness panel, to produce guidance in this challenging clinical area. Regarding initial management, there was agreement that all patients with ASUC should be managed as inpatients. Ambulatory care was considered inappropriate, since patients with ASUC need regular monitoring and involvement of a multidisciplinary team, this type of complex care being difficult to deliver in the outpatient setting. While there was some support for ambulatory management to avoid patients being admitted, thereby decreasing the risk of nosocomial acquisition of SARS-CoV-2, the risks of managing ASUC as an outpatient were considered to outweigh this possible benefit. Furthermore, in scenarios in which patients had confirmed SARS-CoV-2 infection, no such benefit existed. Nevertheless, in view of the acknowledged risk of contracting SARS-CoV-2 infection in hospital, it is perhaps unsurprising that the panel considered it appropriate to isolate patients with ASUC in a side room wherever possible.

The panel deemed it uncertain whether a CT chest should be performed in all patients on admission. While a CT chest is more sensitive than a chest X-ray (CXR) in detecting signs of early or limited infection, the COVID-19 specialists advised that a CXR would suffice in asymptomatic patients on admission. However, the Royal College of Radiologists has advised a low-dose CT chest should be performed in patients who are having a CT abdomen as part of the investigation of an abdominal emergency.

It was considered appropriate to involve a COVID-19 specialist in all scenarios in the presence of a positive SARS-CoV-2 swab, regardless of signs or symptoms of COVID-19 pneumonia. The panel was uncertain whether this was required in patients with a negative SARS-CoV-2 swab who required rescue therapy. During the meeting, concern was expressed by some panelists about the possible effects of corticosteroids and rescue therapies on SARS-CoV-2 infection and COVID-19 pneumonia driving the
need to seek clarification from COVID-19 experts and highlighting the need for further research.

First-line therapy
It was considered appropriate to follow the BSG guidelines on the initial management of ASUC in patients without signs or symptoms of COVID-19, regardless of SARS-CoV-2 swab results. Only in patients with COVID-19 pneumonia was there uncertainty among the panel regarding the appropriateness of conventional therapy with intravenous corticosteroids, largely driven by concerns of possible harm. However, it should be noted that in this challenging condition in which there is scant experience and almost no published data in relation to COVID-19, of all suggested treatments, intravenous corticosteroids were given the highest median score by the panel. Regarding the ongoing uncertainty about the benefits or harms of corticosteroids in patients with COVID-19 pneumonia and the inconclusive data emerging from the current coronavirus pandemic, the results of the adaptive trial, RECOVERY, which includes a dexamethasone arm, are eagerly awaited. Nevertheless, leaving ASUC untreated is associated with a high risk of death, mortality being at least 24% in the days before the use of corticosteroids.

The panel was uncertain whether infliximab, without concurrent corticosteroids, should be used as a first-line therapy in patients who are SARS-CoV-2 positive, regardless of whether they had COVID-19. As with corticosteroids, the risk of anti-TNF in the context of the pandemic is unknown. In addition, there is no high-quality evidence for infliximab in ASUC other than as a rescue therapy following corticosteroid failure. Anti-TNF agents are known to increase the risk of respiratory tract and other opportunistic infections, particularly when used in association with thiopurines and corticosteroids. However, anti-TNF therapies are currently being evaluated in clinical trials as a potential treatment for COVID-19-induced cytokine storm.

In view of the uncertainty of the effects of corticosteroids and infliximab on SARS-CoV-2 infection, it was considered appropriate that all patients with a positive swab should be discussed with a COVID-19 specialist to guide decision-making.

Rescue therapy
Up to half of patients with ASUC fail first-line medical therapy with corticosteroids. In all scenarios, it was considered inappropriate to continue this treatment alone in the face of non-response at day 3, consistent with current BSG guidelines. Similarly, in line with BSG guidance, it was considered appropriate to commence infliximab while continuing corticosteroids, regardless of SARS-CoV-2 status. Discontinuation of corticosteroids at the point of commencing infliximab rescue therapy was considered of uncertain appropriateness across all scenarios, as it may result in worsening colitis, while acknowledging the potential risks of combining the two drugs. Ciclosporin rescue therapy was generally considered inappropriate, due in part to concerns about the risks of drug-induced nephrotoxicity given the frequency of acute kidney injury in SARS-CoV-2 infection. In addition, the infusion regimen requires frequent healthcare worker–patient contact which could, in theory, increase the risk of transmission. The panel did not explore its use in settings in which infliximab may be relatively contraindicated, such as previous loss of response to infliximab, drug immunogenicity or when relevant comorbidities exist, such as multiple sclerosis. Similarly, the panel did not specifically address the question of whether infliximab was used as a monotherapy or in combination with an immunomodulator.

There is little evidence regarding the risks of surgical management in patients with COVID-19. Preliminary data demonstrate a substantial increase in morbidity and mortality among patients infected with SARS-CoV-2 undergoing surgery. In one report, 34 patients underwent elective surgery in Wuhan, China, with all developing COVID-19 pneumonia, 7 of whom (20%) died. Accordingly, the risks of surgery drove the rating of colectomy as first-line therapy or as an alternative to rescue therapy, as being inappropriate. However, in patients failing medical therapy, there was consensus that delaying surgery would be inappropriate.

Continuing medical therapy
The BSG IBD guidelines recommend corticosteroid tapering over 6–8 weeks which was considered appropriate by the panel, except in the context of COVID-19 pneumonia where an accelerated taper over 4–6 weeks was considered appropriate instead. A more accelerated taper, over fewer than 4 weeks, was generally deemed inappropriate due to the high risk of relapse in this cohort. Regarding initiation of maintenance therapy either before or shortly after discharge from hospital, it was considered appropriate to start anti-TNF, vedolizumab or ustekinumab in patients with negative swabs. However, in scenarios in which patients had positive swabs, with or without evidence of COVID-19 pneumonia, there was uncertainty about the risk:benefit ratio of biological therapy, driven by the lack of evidence. Thus, biological use in this situation was deemed uncertain in nearly all scenarios.

Thiopurines and tofacitinib were not considered appropriate at any stage during the scenarios. This is consistent with the BSG recommendation that thiopurines should be initiated at or soon after discharge following successful treatment of ASUC. Azathioprine therapy was in part considered inappropriate due to possible side effects such as pancreatitis, which could result in readmission to hospital, and drug hypersensitivity, which can manifest as a flulike syndrome which may potentially be confused with COVID-19. Azathioprine can also induce significant lymphopenia which may mimic the lymphopenia seen in SARS-CoV-2 infection. How this affects outcome of COVID-19 is unclear; some reports even suggest a theoretical benefit of thiopurines. The additional monitoring required when azathioprine is initiated may also be a challenge with COVID-19-related service reconfiguration and antecedent risks of SARS-CoV-2 acquisition posed by the requirement for face-to-face contact from laboratory monitoring.

Tofacitinib is a non-selective Janus kinase inhibitor which is associated with herpes zoster viral reactivation and, like COVID-19, is also associated with an increased risk of deep vein thrombosis. There is also very limited evidence for its use in the setting of ASUC. For these reasons, the panel considered its use inappropriate in nearly all settings although it was noted that its rapid offset of action could be of theoretical benefit.

Anticoagulation
Prophylactic anticoagulation was considered appropriate beyond discharge among patients with a positive SARS-CoV-2 swab, although this strategy was deemed uncertain in people with negative swabs. Like ASUC, COVID-19 is strongly linked to a hypercoagulable state with substantially increased risk of microthrombi and venous thromboembolism (VTE). It is notable that the British Thoracic Society recommends...
doubling the dose of anticoagulation and/or prescribing VTE prophylaxis (low-molecular-weight heparin or direct oral anticoagulant) for up to 4 weeks following discharge in high-risk patients with COVID-19.¹⁸

Strengths and limitations

The strengths of our study include the inclusion of a diverse group of IBD experts drawn from a wide range of UK centres as well as non-gastroenterology specialists with experience in managing patients with COVID-19. In addition, we used the RAND methodology which is a validated technique to guide decision-making in the absence of a robust evidence base. It is not necessarily an attempt to reach consensus but rather to guide clinicians as to the appropriateness or inappropriateness of interventions, while accepting that uncertainty is also a valid outcome, which was highly appropriate in this setting. It was impossible for our scenarios to encompass fully all cases encountered in clinical practice. We, therefore, focused on principles that may help to guide decision-making in most cases of ASUC in the context of COVID-19. We appreciate that by doing so, this guidance may not be directly applicable to more nuanced cases where decision-making may be influenced by a myriad of factors. Nor was every aspect of care considered; for example, the question of repeating testing for *Clostridium difficile* prior to colectomy in view of higher exposure to antibiotics in the COVID-19 era was not addressed. The outcomes should, therefore, be considered an adjunct to multidisciplinary decision-making rather than a replacement. Finally, knowledge within the field remains fast moving such that it will be important to stay abreast of new developments as they arise.

Implications and concluding remarks

By combining clinical expertise from the BSG CRG and IBD Section Committee in conjunction with other medical and surgical IBD and COVID-19 experts, we have provided guidance to clinicians regarding the appropriate management of ASUC during the COVID-19 pandemic, highlighting where current BSG guidance may need adaptation. Population-based studies are needed to clarify the risks and benefits of interventions used in the management of ASUC during the pandemic. Until then, we consider the results of the panel, which largely support following the well-established and evidence-based BSG guideline, will help guide clinicians in this challenging and evolving area.

Author affiliations

¹Department of Gastroenterology, Western General Hospital, Edinburgh, UK
²Gastroenterology and Hepatology Unit, University of Edinburgh, Edinburgh, UK
³Department of Gastroenterology, King’s College Hospital NHS Foundation Trust, London, UK
⁴Faculty of Life Sciences & Medicine, King’s College London, London, UK
⁵Department of Gastroenterology, St George’s Healthcare NHS Trust, London, UK
⁶Institute of Infection and Immunity, St George’s University Hospitals NHS Foundation Trust, London, UK
⁷Department of Gastroenterology, Guy’s and Saint Thomas’ Hospitals NHS Trust, London, UK
⁸Department of Gastroenterology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
⁹Exeter IBD Research Group, University of Exeter, Exeter, UK
¹⁰Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, UK
¹¹Interstitial Lung Disease Unit, Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
¹²Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
¹³Department of Gastroenterology, Royal Free Hospital, London, UK
¹⁴Department of Rheumatology, King’s College Hospital, London, UK
¹⁵Gastroenterology Unit, Glasgow Royal Infirmary, Glasgow, UK
¹⁶Peri-operative Medicine, Barts Health NHS Trust, London, UK
¹⁷Faculty of Medicine, National Heart and Lung Institute, London, UK
¹⁸Department of General Surgery, Manchester University NHS Foundation Trust, Manchester, UK
¹⁹Paediatric Gastroenterology and Nutrition, Royal Hospital for Children, Glasgow, UK
²⁰IBD Unit, St Mark’s Hospital, London, UK
²¹Antigen Presentation Research Group, Imperial College London, London, UK
²²Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
²³Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
²⁴Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
²⁵Department of Gastroenterology, Pennine Acute Hospitals NHS Trust, Manchester, UK
²⁶Manchester Academic Health Science Centre, Manchester, UK
²⁷Department of Gastroenterology, Barts Health NHS Trust, London, UK
²⁸Division of Digestive Diseases, Imperial College London, London, UK
²⁹Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, University of Liverpool Institute of Translational Medicine, Liverpool, UK
³⁰Department of Gastroenterology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
³¹Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK
³²Department of Gastroenterology, Hull University Teaching Hospitals NHS Trust, Hull, UK
³³Department of Immunology and Inflammation, Hull York Medical School, Hull, Kingston upon Hull, UK
³⁴Department of Gastroenterology, Royal Liverpool University Hospital, Liverpool, UK
³⁵Department of Infectious Disease, North Manchester General Hospital, Manchester, UK
³⁶Crohn’s and Colitis UK, Saint Albans, UK
³⁷Peter Gorer Department of Immunology, School of Immunology and Microbial Sciences, King’s College London, London, UK

Correction notice This article has been corrected since it published Online First. ORCID ID’s have been added, figure 1 replaced and text ‘COVID swab’ within tables replaced with ‘SARS-CoV-2’.

Twitter Richard C Pollock @RNA, Christopher Andrew Lamb @DrChrisLamb and Jimmy K Limdi @klimdi

Acknowledgements The authors acknowledge the input of Professor Jon Rhodes for his helpful comments and suggestions.

Contributors All authors approved the final version. Study concept and design: SD, AK, RCP MAS, PMI. Development of questionnaire: SD, AK, RCP, SMP, PMI, MAS, NK. Data analysis: PMI, MAS, SM. Interpretation of data and drafting of manuscript: SD, AK, RCP, SM, MAS, NK, PMI. Panelists, experts and moderators: SD, AK, RCP, SMP, NK, JOL, CAL, JKL, CP, CS, SS, DRG, TR, RJD, AH, LV, CW, IA, FC, AG, AU, MG, PT, LH, MAS, SM, PMI. Contributions to literature review and critical revision of the manuscript for important intellectual content: All authors.

Funding PMI is supported by a grant from the Medical Research Council [MR/ T005564/1].

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: creativecommons.org/licenses/by/4.0/.

ORCID iDs

Shahida Din http://orcid.org/0000-0003-2855-3400
Alexandra Kent http://orcid.org/0000-0003-0577-6177
Richard C Pollock http://orcid.org/0000-0001-6452-6763
Susanna Meade http://orcid.org/0000-0002-8283-6148
Nicholas A Kennedy http://orcid.org/0000-0003-4368-1961
Ian Arnott http://orcid.org/0000-0003-3532-925
R Mark Beattie http://orcid.org/0000-0003-4721-0577
Felix Chua http://orcid.org/0000-0001-7845-0173
Rachel Cooney http://orcid.org/0000-0003-3710-157X
Robin J Dart http://orcid.org/0000-0003-3470-8210
James Galloway http://orcid.org/0000-0002-1230-2781
Daniel R Gaya http://orcid.org/0000-0003-1942-7568
Subrata Ghosh http://orcid.org/0000-0002-1713-7797

Open access by guest. Protected by copyright. http://gut.bmj.com/ Gut: first published as 10.1136/gutjnl-2020-321927 on 8 June 2020. Downloaded from http://gut.bmj.com on September 15, 2023 by guest. Protected by copyright.
REFERENCES

