














520 Chen X, et al. Gut 2020;69:513–522. doi:10.1136/gutjnl-2019-319101

Gut microbiota

Figure 5  Bacterial translocation and infl ammation in the placenta. (A) Total bacterial load indicated by the relative expression of 16S rRNA in 
normotension (NP) and PE placentas (n=20–22). (B) Representative in situ detection of bacteria in the NP and PE placentas. Placental tissue sections 
were stained with DAPI (blue) and probed with universal eubacterial probe EUB338 (green) and scrambled probe NOEUB. Original magni�cation: 
×200; scale bar=100 µm. (C) Comparison of total bacterial load in the placenta of PE-FMT, NP-FMT and control mice (n=8 in each group). (D) 
Representative images of in situ staining of the junction zone of the recipient mice placentas. 16S probe EUB338 staining is shown in green, with 
nuclear stain (DAPI) in blue. Original magni�cation: ×200; scale bar=100 µm. (E) PCoA of unweighted UniFrac distances for all samples, coloured 
by sample type. The eigenvalues of axe PC1 and PC2 were 1.61 (8.35%) and 1.07 (5.56%), respectively. (F,G) PCoA based on unweighted UniFrac 
distances comparing bacterial community structure of placenta samples between patients with PE and NP, and PE-FMT and NP-FMT mice. The 
eigenvalues of axe PC1 and PC2 were 1.63 (10.14%) and 0.89 (5.51%), respectively (F). The eigenvalues of axe PC1 and PC2 were 1.63 (10.14%) and 
0.89 (5.51%), respectively (G). (H) mRNA levels of key cytokines and chemokines in PE and NP placentas (n=21–24). (I) mRNA levels of key cytokines 
and chemokines in mouse placentas (n=7–8). Differences in beta diversity were tested by permutational multivariate ANOVA (Adonis) (E–G). Data 
are presented as the mean±SEM (A,C,H,I). *P<0.05, **P<0.01; two-tailed Student’s t test (A,H); one-way ANOVA following Duncan’s multiple range 
test (C, I). ANOVA, analysis of variance; FMT, faecal microbiota transplantation; mRNA, messenger RNA; NP, normotensive pregnant; PCoA, principal 
coordinate analysis; PE, pre-eclampsia; rRNA, ribosomal RNA.

Proinflammatory cytokine and chemokines are thought to 
play key roles in the pathophysiology of PE.31 32 We next exam-
ined alterations in chemokine and proinflammatory cytokine 
expression in the placenta. Particularly, the levels of IL6, Il1��, 
Ccl3 or Ccl4 messenger RNA were significantly increased in the 
PE group compared with those in the NP group for both human 
and mice placentas (figure 5H,I).

Discussion
PE is one of the most severe diseases during pregnancy that not 
only leads to pregnancy abortion but also is life threatening.1 
Effective methods for the prediction, prevention and treat-
ment of this disease are lacking because its aetiology remains 
unclear.3 The present study aimed to seek these answers from 
the gut. We found that the gut microbiome was dramatically 
shifted in patients with PE. Thus, using FMT, we proved that 

the gut dysbiosis can cause pre-eclamptic systems. One possible 
mechanism through which this happens might be gut barrier 
destruction and the translocation of pathogenic bacteria from 
the gut to the placenta, causing abnormal immune responses, as 
we identified higher levels of total bacteria and Fusobacterium 
in the placenta of both human and mice with PE. Our study 
proposed that a ‘gut–placenta’ axis could play a crucial role in 
understanding the aetiology of PE.

The gut dysbiosis in PE observed in our study was obvious and 
echoes the findings of previous reports. Because the human gut 
microbiome is highly heterogeneous among individuals, microbi-
omes in healthy and diseased individuals are usually overlapped 
with partial differentiation when analysed with unsupervised 
learning.8 Nevertheless, in this study, the gut microbiome in 
PE clearly deviated from that in the controls and showed very 
little overlap, indicating severe dysbiosis in PE. More interesting 
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were the dysbiosis patterns, such that Faecalibacterium and 
Akkermansia were depleted, whereas Fusobacterium and Veil-
lonella were enriched in PE. Similar to the microbiota profile 
of non-pregnant hypertensive patients,11Faecalibacterium and 
Akkermansia, which are involved in producing intestinal epithe-
lial nutrition, maintaining immune homeostasis and strength-
ening intestinal barrier functions, were depleted in patients with 
PE.33 34 Fusobacterium and Veillonella are mainly opportunistic 
pathogens and are associated with chronic inflammatory condi-
tions and adverse pregnancy outcomes.35–37 Moreover, Liu et 
al found that these bacteria were changed in the intestine of 
patients with PE in America and South China, indicating that the 
dysbiosis patterns for PE are consistent across populations and 
regions.14 15 38 Thus, the dysbiosis pattern in PE reported by our 
research is reliable.

Fusobacterium could be the key regulator of the gut–
placenta axis during PE. The enrichment of Fusobacterium in 
PE is especially worth noting because it is a newly identified 
key pathogen involved in promoting colorectal cancer.39 The 
mechanism involved is that Fusobacterium can affect apoptosis, 
cellular proliferation and DNA repair through its attachment 
to epithelial cells via Fusobacterium adhesion A and its activa-
tion of the immune response via the nuclear factor-κB signal-
ling pathways.40 In other words, Fusobacterium is especially 
good at disrupting intestinal epithelia leading to gut leakage.41 
A possible consequence of a leaky gut is bacterial translocation, 
as we have identified more total bacteria and Fusobacterium 
in the placenta of both women and mice with PE. Moreover, 
Amarasekara et al also found the increase of Fusobacterium in 
PE placentas, which may invade endothelial cells and elicit local 
inflammation.42 43 The existence of a placenta microbiome is 
at the centre of debate44 45; nevertheless, our standpoint is that 
bacteria can translocate into placenta in pathological conditions, 
which is supported by recent studies.46 Moreover, we carefully 
maintained sterile conditions during placenta sampling and used 
controls to monitor contaminations. Even though the possibility 
of contamination cannot be theoretically ruled out currently, we 
believe that future studies focusing on Fusobacterium can help 
gain insight into the gut–placenta axis during PE.

Excessive maternal inflammation, commonly involved in 
PE pathogenesis by an imbalance of Treg/Th17, is also a puta-
tive result of gut dysbiosis.26 47 In the current study, PE-FMT 
mice exhibited a mucosal and systematic imbalance of Treg and 
Th17 cells and exaggerated inflammation in the placenta. This 
increased the inflammatory cytokines, leading to placental oxida-
tive stress and vascular dysfunction, resulting in rejection of the 
fetus and the development of hypertension.32 We found that gut 
dysbiosis in PE can elevate the host’s BP, which is a major mani-
festation of PE. It has been reported that the gut microbiome is 
altered on entry into pregnancy48; therefore, we deduce that in 
some cases, a dysbiosis status in pregnancy can elevate the BP, 
leading to PE. This deduction provides a novel view of PE aeti-
ology, which needs further research. Interestingly, mice receiving 
faecal material from patients with PE showed elevated BP even 
before pregnancy, indicating that the hypertensive effect of gut 
dysbiosis is independent of pregnancy. It is also unclear why 
some women have this PE-prone dysbiosis during pregnancy; for 
example, whether the dysbiosis occurs due to hormone changes 
or diet shifting needs to be investigated in the future.

The present study has several limitations. First, for the mouse 
FMT experiment, we used whole faecal materials that included 
bacteria, fungi, virus, phages, proteins and metabolites from 
both bacteria and the host. Therefore, it is not precisely clear 
which component from the faeces functions in PE. It is, thus, 

important to use multiomics techniques, inactivated faeces and 
isolated bacteria/metabolites to affirm the key factors contrib-
uting to PE. Second, even though we have used three methods, 
including sequencing, ISH and quantitative PCR, and iden-
tified bacteria in the placenta, these methods do not indicate 
the liveness of the detected bacteria. Future studies that isolate 
live bacteria from placenta can certainly add credibility to our 
findings. Lastly, even though we have detected the enrichment 
of Fusobacterium in the gut and placenta and hypothesised 
its translocation from the gut to the placenta, the exact route 
through which Fusobacterium completes its translocation also 
needs further investigation.

Overall, we identified here obvious gut dysbiosis in patients 
with PE and proved that this dysbiosis can cause pre-eclamptic 
systems. The possible underlying mechanisms is that dysbiosis 
influences the host’s BP and that gut Fusobacterium translocates 
into the placenta, causing local placental inflammation. Cohort 
studies that follow up women from early pregnancy to observe 
their microbiome dynamics, BP changes and PE occurrence 
will offer critical evidence linking the gut microbiome to PE. In 
conclusion, our study indicates the role of the gut–placenta axis 
in PE, providing new insights into PE aetiology.
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