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Figure 6  Single-cell analysis of lung cells. (A) Uniform manifold approximation and projection (UMAP) plots showing the landscape of lung cells. (B) 
Dot plot showing the marker genes for lung cells. (C) UMAP plots showing the expression of ACE2 and transmembrane serine protease (TMPRSS2). 
The plots were merged to show the coexpression of these genes. (D) Violin plots for expression levels of ACE2 and TMPRSS2 across clusters. The 
expression is measured as the log2 (TP10K+1) value. DC, dendritic cell; NK, natural killer.

that it binds ACE2 with higher affinity than does SARS CoV S 
protein.34

The TMPRSS2 can cleave SARS-S protein and render host cell 
entry independent of the endosomal pathway using cathepsin 
B/L.35 Different from cathepsin B/L, they can also promote 
viral spread in the host and cleave ACE2 to augment about 
30-fold viral infectivity.36 37 In addition, the key sequence of 
SARS-CoV-2 spike protein cleavage has higher furin score 
(0.688) than thecorresponding sequence in SARS-CoV (0.139), 
which increases its infectivity.38 Serine protease inhibitor could 
also block SARS-CoV-2 infection of lung cells.13

By analysing the coexpression of ACE2 of TMPRSS2 in the 
normal human gastrointestinal system and lung, we identified 
AT2 cells the most susceptible cells in the lung due to its high 
expression of ACE2 and TMPRRS2. AT1cells could also be the 
host cells of infection, which have relatively lower expression 
than AT2 cells. These results were consistent with the findings of 
a previous study.39 In lung alveoli, AT1 epithelial cells are respon-
sible for gas exchange and AT2 cells are in charge of surfactant 
biosynthesis and self-renewal.40 In SARS-CoV infection, AT2 
is the major infected cell type, as assessed by viral antigen and 
secretory vesicle detection. Its expression in AT2 cells is variable 
in different donors, which may be associated with susceptibility 
and seriousness differences.39 Thus, we hypothesise that AT2 
cells might be the key SARS-CoV-2-invaded cells in the lung and 

the number of AT2 cells might be associated with the severity of 
respiratory symptoms.

Besides the lung, coexpression of ACE2 and TMPRSS2 was 
found in oesophageal upper and gland cells and absorptive entero-
cytes from the ileum and colon. Histologically, both oesophageal 
and respiratory system organs, such as the trachea and lung, orig-
inate from the anterior portion of the intermediate foregut.41 
After separating from the neighbouring respiratory system, 
the oesophagus undergoes subsequent morphogenesis from a 
simple columnar-to-stratified squamous epithelium.42 The upper 
epithelium can be nourished by submucosal glands and sustain 
the passage of abrasive raw food. In Barrett’s oesophagus, acid 
reflux-induced oesophagitis and the multilayered epithelium are 
associated with upper epithelial cells.43 In the digestive system, 
in addition to being expressed in oesophageal upper epithelial 
and gland cells, coexpression of ACE2 and TMPRSS2 was also 
found in the absorptive enterocytes from the ileum and colon, 
the most vulnerable intestinal epithelial cells. During microbial 
infections, intestinal epithelial cells function as a barrier and help 
coordinate immune responses.44 The absorptive enterocytes can 
be infected by coronavirus, rotavirus and noroviruses, resulting 
in diarrhoea by absorptive enterocytes destruction, malabsorp-
tion, unbalanced intestinal secretion and enteric nervous system 
activation.45–47 Although most virus would be dead in the strong 
acid environment in the stomach, there is still a possibility that 
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Figure 7  Expression of ACE2 and transmembrane serine protease (TMPRSS2) at RNA and protein levels in different tissues.(A) Violin plots 
for ACE2 and TMPRSS2 expression across two lung clusters and seven digestive tract clusters. The gene expression matrix was normalised and 
denoised to remove unwanted technical variability across the four datasets. (B) External validation of ACE2 and TMPRSS2 at RNA level in different 
tissues. The expression is measured as the pTPM value in the RNA-seq data from the Genotype-Tissue Expression database. (C) Representative 
immunohistochemical images of ACE2 in different tissues from the HumanProtein Atlas database.

the saliva and secretions could carry the virus into the digestive 
tract where viral replication may be sustained in these suscep-
tible cells. Thus, the enteric symptom of diarrhoea might be 
associated with the infected ACE2-expressing and TMPRSS2-
expressing enterocytes. This could also help explain the fact that 
10% of patients presented with diarrhoea and nausea 1 or 2 days 
before the development of fever and respiratory symptoms.6

Moreover, due to the high expression of ACE2 and TMPRSS2 
in oesophageal upper cells and absorptive enterocytes from the 
ileum and colon, we propose that the digestive system could be 
invaded by SARS-CoV-2 and might serve as a route of infection. 
This supposition was supported by the first case of SARS-CoV-2 
in the USA, whose stool specimen obtained on illness day 7 was 
detected SARS-CoV-2 RNA.48 SARS-CoV-2 was also isolated 
from a stool specimen of a confirmed case in China.49 addi-
tionallyThe evidence that live virus in stool specimens further 
supports our hypothesis.

Conclusion
This single-cell transcriptomic study provides the evidence of 
the potential route of SARS-CoV-2 in the digestive system along 
with the respiratory tract. It may have a significant impact to 
health policy setting regarding the prevention of SARS-CoV-2 
infection. In addition, our study provides a novel method to 
guide identification of prime cell types of a virus by thecoexpres-
sion pattern analysis of single-cell sequencing data.
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