Risk of severe illness from COVID-19 in patients with metabolic dysfunction-associated fatty liver disease and increased fibrosis scores

A recent study reported that patients with severe COVID-19 were more likely to have non-alcoholic fatty liver disease (NAFLD) compared with those with non-severe COVID-19 illness. However, the prognosis of NAFLD (recently renamed metabolic dysfunction-associated fatty liver disease (MAFLD)) is determined by the severity of liver fibrosis. We therefore postulated that patients with MAFLD with increased non-invasive liver fibrosis scores are at higher risk of severe illness from COVID-19.

We studied 310 patients with laboratory-confirmed COVID-19 who were consecutively hospitalised at four sites in Zhejiang Province, China, between January and February 2020. Some of these patients (n=150) have been included in a prior study examining the association between obesity and COVID-19 severity. Patients with viral hepatitis, excessive alcohol consumption, chronic pulmonary diseases or active cancers were excluded. Clinical and laboratory data were collected at hospital admission. All patients were screened for hepatic steatosis by computed tomography and subsequently diagnosed as MAFLD. The originally validated cut-points for fibrosis-4 (FIB-4) index and NAFLD fibrosis score (NFS) were used to categorise liver fibrosis probability as low, intermediate or high. COVID-19 severity was classified as severe and non-severe. The study protocol was approved by the local ethics committees of the four hospitals.

In our cohort of 310 confirmed cases of COVID-19, 94 (30.3%) patients had MAFLD. As shown in table 1, patients with MAFLD with intermediate or high FIB-4 scores were more likely to be older, obese, have diabetes and have higher NFS, higher liver enzymes, higher C reactive protein, as well as lower levels of lymphocyte count, platelet count, triglycerides and high-density lipoprotein cholesterol compared with their counterparts with low FIB-4 score or those without MAFLD. Notably, the severity
Similarly, the intermediate/high NFS (unadjusted OR 5.21, 95% CI 2.39 to 11.3) was associated with a higher risk of severe COVID-19 illness. This significant association persisted in multivariable-adjusted analyses after controlling for sex, obesity and diabetes (adjusted OR 2.91, 95% CI 1.20 to 7.06).

When we included FIB-4 or NFS as continuous measures in multivariable regression models, increasing FIB-4 (adjusted OR 1.90, 95% CI 1.33 to 2.72) or NFS (adjusted OR 2.57, 95% CI 1.73 to 3.82) were significantly associated with greater COVID-19 severity, even after adjusting for sex, obesity, diabetes and presence/absence of MAFLD.

Our study has some limitations, including the relatively modest sample size, the Asian ancestry of the cohort and the use of non-invasive fibrosis scores without a histological diagnosis of liver fibrosis. Despite these limitations, our study is the first to examine the impact of FIB-4 or NFS on COVID-19 severity in patients with imaging-defined MAFLD. These non-invasive fibrosis scores have been shown to predict histological fibrosis stage with reasonable accuracy in cohorts of patients with MAFLD, and are also associated with increased overall and disease-specific mortality in population-based studies. Our data demonstrate that patients with MAFLD with increased FIB-4 or NFS are at higher likelihood of having severe COVID-19 illness, irrespective of metabolic comorbidities. In the context of COVID-19, the presence of MAFLD with significant/advanced fibrosis might exacerbate the virus-induced cytokine ‘storm’, possibly through the hepatic release of multiple proinflammatory cytokines, thereby contributing mechanistically to severe COVID-19. Further research is needed to better understand the mechanistic link of advanced MAFLD to the viral disease process.

Giovanni Targher, Alessandro Mantovani, Christopher D Byrne, Xiao-Bo Wang, Hua-Dong Yan, Qing-Feng Sun, Ke-Hua Pan, Kenneth I Zheng, Yong-Ping Chen, Mohammed Eslam, Jacob George, Ming-Hua Zheng

1Department of Medicine, Endocrinology and Metabolism, University of Verona, Verona, Veneto, Italy
2Southampton National Institute for Health Research Biomedical Research Centre, Southampton General Hospital, Southampton, Hampshire, UK
3Department of Critical Care Medicine, Wenzhou Medical College First Affiliated Hospital, Wenzhou, Zhejiang, China
4NAFLD Research Center, Department of Hepatology, Wenzhou Medical College First Affiliated Hospital, Wenzhou, Zhejiang, China
5Department of Infection and Liver Diseases, Liver Research Center, Wenzhou Medical College First Affiliated Hospital, Wenzhou, Zhejiang, China
6Department of Hepatology, Ningbo No 2 Hospital, Ningbo, Zhejiang, China
7Department of Radiology, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
8NAFLD Research Center, Department of Hepatology, Wenzhou Medical College First Affiliated Hospital, Wenzhou, Zhejiang, China
9Storr Liver Centre, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
10Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China

Correspondence to Professor Giovanni Targher, Department of Medicine, Endocrinology and Metabolism, University of Verona, Verona 37126, Italy; giovanni.targher@univr.it and Professor Ming-Hua Zheng, NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No 2 Fuxue Lane, Wenzhou 325000, China; zhengmh@wmu.edu.cn

Correction notice This article has been corrected since it published Online First. A second corresponding author has been added.
Table 2 Association between imaging-defined MAFLD with increasing levels of FIB-4 score and risk of having severe illness associated with COVID-19

<table>
<thead>
<tr>
<th>Severity of COVID-19 Illness (mild/moderate vs severe/critical)</th>
<th>Logistic regression analyses</th>
<th>ORs</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted model 1A</td>
<td>No MAFLD (n=216)</td>
<td>Ref.</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAFLD/FIB-4 status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No MAFLD (n=216)</td>
<td>Ref.</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAFLD with low FIB-4 (≤1.3, n=44)</td>
<td>0.82</td>
<td>0.30 to 2.24</td>
<td>0.696</td>
</tr>
<tr>
<td></td>
<td>MAFLD with intermediate FIB-4 (1.3–2.67, n=36)</td>
<td>2.59</td>
<td>1.09 to 6.13</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>MAFLD with high FIB-4 (>2.67, n=14)</td>
<td>4.04</td>
<td>1.22 to 13.3</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>Sex (men vs women)</td>
<td>1.78</td>
<td>0.93 to 3.44</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>Obesity (yes vs no)</td>
<td>2.62</td>
<td>1.31 to 5.24</td>
<td><0.005</td>
</tr>
<tr>
<td></td>
<td>Prior diabetes (yes vs no)</td>
<td>1.04</td>
<td>0.40 to 2.80</td>
<td>0.528</td>
</tr>
<tr>
<td>Adjusted model 2A</td>
<td>No MAFLD (n=216)</td>
<td>Ref.</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAFLD with low FIB-4 (≤1.3, n=44)</td>
<td>0.82</td>
<td>0.30 to 2.24</td>
<td>0.696</td>
</tr>
<tr>
<td></td>
<td>MAFLD with intermediate FIB-4 (1.3–2.67, n=36)</td>
<td>2.95</td>
<td>1.37 to 6.34</td>
<td><0.005</td>
</tr>
<tr>
<td></td>
<td>MAFLD with high FIB-4 (>2.67, n=14)</td>
<td>4.68</td>
<td>2.31 to 9.49</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Sex (men vs women)</td>
<td>1.79</td>
<td>0.94 to 3.45</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>Obesity (yes vs no)</td>
<td>2.60</td>
<td>1.30 to 5.16</td>
<td><0.005</td>
</tr>
<tr>
<td></td>
<td>Prior diabetes (yes vs no)</td>
<td>1.09</td>
<td>0.47 to 2.89</td>
<td>0.821</td>
</tr>
</tbody>
</table>

Sample sizes, n=310. Data are expressed as ORs and 95% CI as tested by univariable (unadjusted) and multivariable (adjusted) logistic regression analysis. Diabetes was diagnosed as self-reported history of disease and/or specific drug treatment. Obesity was diagnosed as BMI ≥30 kg/m². In the adjusted logistic regression models, we did not additionally adjust also for age, because this variable is already incorporated in the FIB-4 score. MAFLD: metabolic associated fatty liver disease; Ref: reference category.

Funding
MH-Z is supported by grants from the National Natural Science Foundation of China (81500665). CDB is supported in part by the Southampton NHIR Biomedical Research Centre (IS-BRC-20004). UK. CT is supported in part by grants from the School of Medicine, University of Verona, Verona, Italy.

Competing interests
None declared.

Patient consent for publication
Not required.

Provenance and peer review
Not commissioned; externally peer reviewed.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.

ORCID iDs
Giovanni Targher http://orcid.org/0000-0002-4325-3900
Kenneth I Zheng http://orcid.org/0000-0001-1726-9298
Jacob George http://orcid.org/0000-0002-8421-5476
Ming-Hua Zheng http://orcid.org/0000-0003-4984-2631

REFERENCES