involved in mechano-transduction. PDLIM5 mRNA expression was confirmed by qPCR, and PDLIM5 protein expression was demonstrated by WB and ICC in both LX-2 cells and primary HSCs. Stimulation of LX-2 cells with TGFβ (2 ng/ml) for 24 hrs significantly increased expression of enigma proteins. siRNA knock down of PDLIM5 reduced the expression of fibrogenic genes including ACTA2, CTGF, and COL1; and was accompanied by increased cytoplasmic localization and phosphorylation (inactivation) of YAP1.

Conclusion In brief, our work defined a new mechanism for activation and nuclear translocation of YAP1 in HSCs via the enigma family protein PDLIM5. Understanding hippo independent mechanisms of YAP1 activation in HSCs may reveal novel targets for urgently needed anti-fibrotics.

P3 PORTO-MESENTERIC THROMBOSIS IN A NON-CIRRHOTIC PATIENT WITH SARS-COV-2 INFECTION

Kushala Abeysekera*, Jane Gitahi, Richard Flood, Alexis Sudlov, Stephen Lyen, Amanda Clark, Fiona Gordon. Department of Liver Medicine, Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, UK; 2Department of Radiology, Southmead Hospital, North Bristol NHS Foundation Trust, Bristol, UK; 3Department of Surgery, Southmead Hospital, North Bristol NHS Foundation Trust, Bristol, UK; 4Department of Radiology, Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK; 5Bristol Haematology and Oncology Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK

Introduction During the coronavirus 2019 (COVID-19) pandemic, it is clear this novel coronavirus generates a markedly hypercoagulable state. Thrombotic events are driven by a severe pro-inflammatory response to COVID-19 as well as hypoxia manifested in severe illness. Whilst the commonest thrombotic events associated with COVID-19 remain pulmonary embolism, myocardial infarction and deep vein thrombosis, intra-abdominal thromboses are less well characterised, but are illustrated in this case.

Case Presentation A 42 year-old Eastern European man with chronic hepatitis B (undetectable viral load on Entecavir; eAg negative; sAg positive; alanine transaminase (ALT) 34 IU/l; albumin 31 g/l. Having been discharged with analgesia, on March 2020, he is currently asymptomatic.

Discussion This is one of the first cases of likely COVID-19-related porto-mesenteric thrombosis to be described in the UK. Similar cases have been described in France and Italy in non-cirrhotic patients. With almost a fifth of COVID-19 infections presenting with gastrointestinal symptoms, and a recent meta-analysis suggesting 9.2% developing abdominal pain, our threshold for performing liver ultrasound with doppler assessment must be lower to avoid missing this reversible complication of COVID-19.

P4 A 21 YEAR REVIEW OF TRANSJUGULAR INTRAHEPATIC PORTOSYSTEMIC SHUNT PLACEMENTS IN UNIVERSITY HOSPITAL OF WALES, CARDIFF

Bradley Ains-Williams*, Tomos Sennitt, Andrew Wood, Lawrence Sunder Raj, Brijesh Srivastava, Andrew Godkin, Andrew Gordon, Thomas Pembroke. University Hospital of Wales, Cardiff, UK

Introduction Decompensated cirrhosis is associated with poor outcomes and the incidence of advanced liver disease has increased in Wales over the last two decades. Transjugular intrahepatic portosystemic shunts (TIPSS) are an effective treatment of recurrent variceal bleeding and refractory ascites.

Methods A retrospective casenote review of all successful and unsuccessful TIPSS procedures at University Hospital of Wales. Clinical scores were calculated from bloods at the time of TIPSS placement. These cases were then compared to the 2020 BSG TIPSS guidelines1 for concordance.

Results 93 TIPSS procedures were attempted between March 1999 and June 2020, 85 (91%) of which were successful. The average age was 58 (29–84) and 54 (58%) were male. 72 (77.4%) referrals were from Cardiff and Vale, 19 (20.4%) were from the rest of South Wales, and 2 (2.2%) were from England.

The predominant etiologies of cirrhosis were alcohol (44%), NASH (23%), viral hepatitis (9%) and PBC (6%).

The main indications for TIPSS were oesophageal (53%) and gastric (11%) variceal bleeding, resistant ascites (24%), stomal variceal bleeding (6%). Of note, a caecal varix was the indication in one case and GAVE was the indication in two cases (a failed TIPSS that was then repeated successfully in the same patient). The average MELD-Na was 14 (6–29). The average post-TIPSS gradient was 8.5 mmHg (2–13). 30-day survival was 93%. Poorer survival was associated with increasing MELD-Na. All 4 patients with MELD-Na >24 died by day 32. There has been an increase in TIPSS procedures from an average of 1 per year between 1999–2004 to 8 per year between 2017–2019. 11 TIPSS procedures were performed in 2019, all successful. 6 successful TIPSS performed in 2020 so far.

Discussion TIPSS is an effective therapy in selected cases. The demand for TIPSS is increasing. Formalised referral pathways would improve access across South Wales. In alignment with the 2020 BSG TIPSS guidelines1 a concordant indication was present in 91/93 (97.8%) of cases.
Introduction In May 2017, a service evaluation of the management of primary biliary cholangitis in Aneurin Bevan University Health Board was performed. The evaluation identified three groups of patients: 1) non-responders to optimal ursodeoxycholic acid (UDCA), 2) patients on sub-optimal UDCA (<15 mg/kg) with persistent alkaline phosphatase (ALP) elevation and 3) patients intolerant of UDCA with persistent ALP elevation. This follow-up evaluation in January 2020 reviews how these patients have been managed since and whether their disease has progressed.

Methods Of 112 patients evaluated in 2017, 30 were identified for review of their management. 11, 15, and 4 patients were in groups 1, 2, and 3 respectively.

Clinical letters, weight, medications, and liver biochemistry results of these 30 patients were reviewed again in January 2020. Treatment response to UDCA was assessed using the Toronto criteria (ALP of >1.67 the upper limit of normal). Optimal UDCA therapy was considered to be ≥15 mg/kg based on most recent patient weight available.

Results

UDCA-non-responders (n=11)

3 did not have information available since 2017; 1 since deceased and 2 did not attend follow-up. Of the 8 reviewed 5 now have an ALP <1.67 ULN within the last 12 months. 1 is now on OCA but still has an elevated ALP and could be eligible for OCA. Median UDCA dose was 14.6 mg/kg (12.2–19.3). Median ALP was 187 (96–283).

Sub-optimal UDCA patients (n=15)

2 did not have information available since 2017, both deceased. Of the 13 reviewed, 8 had an ALP <1.67 ULN (all within the last 12 months except 1). 5 still had an elevated ALP. 2 need an increased dose of UDCA to ≥15 mg/kg. 2 have been unable to tolerate increased doses of UDCA and could be eligible for OCA. 1 is now on optimal UDCA but still has an elevated ALP and could be suitable for OCA. Median UDCA dose was 13.7 mg/kg (7.3 – 17.9). Median ALP was 200 (8–380).

Patients intolerant to UDCA (n=4)

2 patients have since died, and 1 was discharged due to old age and frailty. 1 patient would be eligible for OCA if pruritus resolves.

Discussion Of the 22 patients that were reviewed, 13 now have an ALP <1.67 ULN, 3 need UDCA optimisation, 1 patient is on OCA and 5 further patients could be suitable for OCA.

Abstract P6

Table 1 Results of literature review and analysis

<table>
<thead>
<tr>
<th>Paper no.</th>
<th>First author</th>
<th>Year</th>
<th>No. biopsy readings</th>
<th>Average NIA kappa score</th>
<th>Average fibrosis kappa score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goldin, R.</td>
<td>1996</td>
<td>100</td>
<td>0.31</td>
<td>0.76</td>
</tr>
<tr>
<td>2</td>
<td>Bedossa, P.</td>
<td>1994</td>
<td>300</td>
<td>0.33</td>
<td>0.78</td>
</tr>
<tr>
<td>3</td>
<td>Rammeh, S.</td>
<td>2014</td>
<td>118</td>
<td>0.35</td>
<td>0.86</td>
</tr>
<tr>
<td>4</td>
<td>McIlroy, M.K.</td>
<td>2011</td>
<td>60</td>
<td>0.57</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Benlloch, S.</td>
<td>2009</td>
<td>122</td>
<td>-</td>
<td>0.75</td>
</tr>
<tr>
<td>6</td>
<td>Petz, D.</td>
<td>2003</td>
<td>200</td>
<td>0.29</td>
<td>0.81</td>
</tr>
<tr>
<td>7</td>
<td>Westin, J.</td>
<td>1999</td>
<td>285</td>
<td>0.28</td>
<td>0.37</td>
</tr>
<tr>
<td>8</td>
<td>Baris, Y.S.</td>
<td>1997</td>
<td>180</td>
<td>0.19</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Analysis of all papers

Range of NIA kappa scores: 0.19-0.57
Mean NIA kappa score: 0.33
Mean fibrosis kappa score: 0.76

Range of fibrosis kappa scores: 0.31-0.86
Weighted mean NIA kappa score: 0.66
Weighted mean fibrosis kappa score: 0.63