LAPS and the ALPPS was 85.7% (6/7) and 78.6% (11/14). The incidence of major complications was 36.4% (4/11) of the ALPPS group and 50.0% (3/6) of the LAPS group after the 2 stages operation. One patient died of the ALPPS group. Additionally, the median increase in FLR, median operative time and blood loss during the two stages of the LAPS were similar to those subjected to ALPPS.

Conclusions LAPS has a potential advantage in eliminating major complications of PHLF associated with classic ALPPS. LAPS may achieve the same effect of promoting significant growth of the FLR in patients with HBV-related HCC, albeit at the cost of longer interval time.

PREDICTION OF MICROVASCULAR INVASION BEFORE SURGERY IN PATIENTS WITH HEPATOCELLULAR CARCINOMA: A NOMOGRAM MODEL BASED ON INFLAMMATORY MARKERS

Qianwen Zeng, Han Xiao, Tingfan Wu, Xin Li, Sui Peng, Ming Kuang. School of Medicine, Sun Yat-sen University, China; Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, China; GE Healthcare, Beijing, China; Clinical Trials Unit, Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, China; Department of Liver Surgery, Cancer Center, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, China

Background Microvascular invasion (MVI) remains a risk factor for tumor recurrence and metastasis in hepatocellular carcinoma (HCC). No effective and well-recognized method can classify immunoscore into 0 or 3 – 4. The data were randomly split into a training and testing dataset. The performance was first estimated on the training dataset with ninefold cross-validation and then further validated on the testing dataset. Cross-entropy was used as a model-optimized loss function and the accuracy as well as the area under the receiver operating characteristic curve (AUC) were calculated for the identification values. Heatmaps were also generated by our model to visualize the regions the most associated with the classification.

Results We included 28 images from a study cohort of 28 HCC patients for training (18 images) and testing (10 images) the model. After iterative training, an optimized architecture was first estimated on the training dataset with ninefold cross-validation and then further validated on the testing dataset. Cross-entropy was used as a model-optimized loss function and the accuracy as well as the area under the receiver operating characteristic curve (AUC) were calculated for the identification values. Heatmaps were also generated by our model to visualize the regions the most associated with the classification.

Conclusions The Nomogram prediction model drawn in this study has a high prognostic value, which is capable of improving the diagnosis efficiency of MVI in HCC patients.