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DISCUSSION
We here report for the first time that FMT can have an effect on 
residual beta cell function in new-onset T1D. This accords with 
recent observational studies supporting a role for the intestinal 

microbiota in T1D subjects.8–12 In contrast to our hypothesis, 
autologous FMT performed better than healthy donor FMT, 
while even in the allogenic group, the decline in MMT stimu-
lated C peptide response appeared less than expected in T1D 

Figure 6  Correlation plots with altered plasma metabolites, bacterial strains and residual beta cell function on FMT. (A) Plot showing Spearman 
correlations of all subjects pooled (n=20). Only signi�cant (p<0.05) correlations are shown. Red designates a negative correlation and blue a positive 
correlation. Dot size corresponds to p value (larger is smaller) and dot colour to correlation strength (Spearman’s rho). This plot was derived from 
a larger plot from which all parameters that did not correlate with our primary endpoint and/or any key parameters were removed. (B) As �gure 
part A, for autologous treatment group. (C)aAs �gure part A, for the allogenic treatment group. AUC, area under the curve; FMT, faecal microbiota 
transplantation.
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without treatment in 1 year.26 27 An appealing explanation would 
be that beneficial immunological effects of FMT (irrespective of 
donor source) are more pronounced and durable when the FMT 
donor microbiota is more immunologically compatible with 
the host. We suspect that allogenic FMT increases the already 
present increase in inflammation that is known to occur around 
the time of diagnosis,31 by offering immunologically foreign 
colonic microbiota to which the host is less tolerant to the small 
intestine (where the T cells are thought to be trained32), which 
may overshadow beneficial effects that occur simultaneously 
and are caused by different agents. In contrast to animal studies, 
the beneficial effect of FMT was not associated with changes 
in SCFA-producing strains.21 Nevertheless, observations point 
towards an immunological regulatory role of specific plasma 
metabolites that are derived from diet and converted by intes-
tinal microbiota.33

Preservation of beta cell function by autologous FMT is T cell 
mediated
A number of studies targeting T cells have shown delayed loss 
of beta cell function in T1D.1 3–5 34 35 Our study underscores 
that beta cell preservation after transplantation of host colonic 
microecology is T cell mediated, as CD4+ CXCR3+ and CD8+ 
CXCR3+ T cells were decreased differentially in the responders 
at 12 months. Beta cells are known to attract autoreactive T cells 
through the production of ligands (ie, CXCL9, 10 and 11) that 
bind to CXCR3.36–38 Also, it is known that the putative immuno-
logical changes occur not peripherally but locally in the pancreas 
and draining lymph nodes, the small intestinal mucosa or the 
gut-draining lymph nodes.39 Indeed, altering tone of the regula-
tory T cells residing in the small intestinal mucosa can prevent 
T1D.40 41 Furthermore, we identified that baseline expression 
of CCL22 in small intestine was a strong predictor of clinical 
response. It has been previously published that small intestinal 
CCL22 expression is higher in T1D subjects versus controls,17 
and CCL22 has been previously suggested as novel therapeutic 
strategy for T1D, for example, protecting against autoimmunity 
in NOD mice by activating and recruiting regulatory T cells and 
decreasing the number of CD8+ T cells.42 43 CCL4 expression 
was also higher in our responders, while in NOD mice CCL4 
is required in protection from T1D by neutralising IL-1644 and 
is also required by T cells for IL-4-mediated protection from 
T1D.45 Also, small CD86 expression was higher in our clin-
ical responders than in non-responders, which is interesting as 
CD86 is required for full T cell activation and also a target of 
Abatacept, which can postpone decline beta cell function in T1D 
subjects.4 46

Preservation of beta cell function is associated with changes 
in specific gut microbiota strains
In line with previous literature,47 we propose that D. piger 
dampens autoimmunity in T1D via plasma 1-arachidonoyl-GPC 
thus affecting CXCR3+ T cells. Predictive modelling showed 
that baseline faecal microbiota taxonomy and metabolic path-
ways accurately predicted response at 12 months. However, the 
identified microbes (eg, B. caccae and C. catus) did not correlate 
with any of our relevant immune parameters, small intestinal 
genes or plasma metabolites. This suggests that faecal micro-
biota composition is consequence rather than cause of the host 
immunological characteristics that associate with response. The 
exception to this was D. piger, a sulfate-reducing bacterial strain 
that was previously shown to shape individual responses of gut 
microbiota to diet.48 Its beneficial effects may be mediated by 

its production of hydrogen sulfide, a molecule that was found 
to have neurostimulatory effects49 and affect regulatory T cells 
and immune homeostasis.50 Moreover, we identified D. piger as 
outstanding faecal microbial predictor of FMT treatment group 
allocation. Interestingly, this small intestinal bacterial strain was 
also beneficially associated with change in stimulated C peptide 
responses on FMT and its abundance increased in the autolo-
gous group and in the overall responders. Interestingly, D. piger 
correlated positively with levels of plasma 1-arachidonoyl-GPC 
(figure  3I), one of our key metabolites that also associated 
with improved C peptide production. Moreover, D. piger and 
this metabolite correlate negatively with CD4+ CXCR3+ and 
CD8+ CXCR3+ T cells, which is in line with previous reports 
in murine T1D.51 In conclusion, D. piger could be a strong 
candidate to dampen autoimmunity by suppressing these cells 
through production of A-GPC, for example, through uptake by 
protruding dendrites of immune cells into the intestinal lumen.52 
Interestingly, D. piger was recently cultured from the human intes-
tinal tract, enabling testing this bacterial strain in human T1D.53 
Other bacterial species in the duodenum that best differentiated 
between treatment groups were two unnamed Prevotella spp and 
S. oralis. In this regard, faecal8 but not duodenal Prevotella has 
been previously linked to T1D. Our explorative integration of 
multiomics analyses subsequently show that these Prevotella spp 
and S. oralis are negatively associated with our key beneficial 
metabolite MA-GPC, a glycerophospholipid. In this regard, other 
phospholipids have previously been linked to beta cell function 
in new-onset T1D.26 B. stercoris correlated positively with D. 
piger and A-GPC and negatively with S. oralis and CCL22, but 
did not correlate positively with C peptide. Intriguingly, B. ster-
coris was recently found to be cross-recognised by ZnT8-reactive 
CD8+ T cells.19 Finally, changes in R. bromii (autologous FMT 
group) and R. intestinalis (allogenic FMT group) were negatively 
associated with changes in C peptide, although both strains are 
generally regarded as beneficial microbes that thrive during 
fibre-rich diets, produce SCFAs and promote intestinal integrity.

Limitations
First, this exploratory RCT stopped enrolment before the calcu-
lated sample size was reached. It is of limited sample size, and 
it was not powered for secondary clinical endpoints such as 
A1c. However, it paves the way for larger studies to confirm 
our findings. Although the driving factors of baseline gut micro-
biota composition for FMT treatment efficacy in new-onset T1D 
are currently unknown, we speculate that the level of clinical 
response might be driven by gut microbial strain composition 
in the FMT (irrespective of donor source) in combination with 
host factors such as autoimmunological tone. Whether adding a 
standard dietary intervention could work synergetic with FMT 
donors better matched to host immunology to optimise clinical 
metabolic and immunological response requires further study. 
Second, we attempted to approximate local effects of our inter-
vention by taking duodenal mucosal biopsies at baseline and after 
6 months (thus during the active FMT intervention). However, 
most relevant immunological effects are expected to occur in the 
pancreas and the pancreatic lymph nodes, compartments that 
cannot be sampled in living T1D patients. Third, our earliest 
biological samples were taken 2 months after first FMT. There-
fore, changes that may have occurred sooner but have waned 
may have been missed. Fourth, our population consisted of 
only adult subjects with consequently slower onset T1D, which 
may be immunologically different from earlier onset adolescent 
T1D.54 Notwithstanding and awaiting confirmation of this pilot 
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trial in a larger RCT with adult T1D patients, our study also 
warrants trials applying FMT in younger T1D subjects. Fifth, 
although insulin resistance plays a modest role in T1D, we have 
not quantified it in this study. As shown in previous research, 
insulin sensitivity can be both increased23 24 and decreased25 
by donor FMT. However unlikely in a state of beta cell failure 
and absolute insulin deficiency, it is conceivable that FMT has 
increased insulin sensitivity thereby counteracting increased C 
peptide release and obscuring observable benefits. Finally, in 
future studies, we should include a true placebo control group 
(eg, lavage and duodenal tube placement without FMT) to 
compare autologous FMT infusions with the ‘natural’ course of 
beta cell function decline in new-onset T1D.

CONCLUSIONS
Faecal transplantation of colon-derived microbiome into the host 
small and large intestine in patients with new onset T1D effec-
tively prolongs residual beta cell function in our study. From this 
hypothesis-generating study, we report several important find-
ings. First,several novel bacterial strains including faecal D. piger 
and B. stercoris as well as duodenal Prevotella spp and S. oralis 
were identified with therapeutic potential. Accordingly, increases 
in plasma phospholipids and tryptophan derivatives such as 
1-myristoyl-2-arachidonoyl-GPC and 1-arachidonoyl-GPC as 
well as 6-bromotryptophan after FMT associated with beneficial 
changes in small intestinal CCL22 expression and whole blood 
immune cell subsets such as CXCR3+ CD4+ T cells. While 
developing the identified leads for assessment in clinical trials in 
T1D will be challenging and time consuming, FMT itself appears 
to be a safe treatment modality that can be readily applied in 
clinical studies to dissect the causal influences of gut microbiota 
in pathophysiology of T1D. We therefore hope that our explor-
atory study will spark larger randomised (allogenic vs autologous 
vs real placebo) FMT trials with a longer follow-up to confirm 
and expand on our compelling findings of FMT-based interven-
tion in the progressive loss of beta cell function in human T1D.
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