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reduce mortality, indicating that the systemic butyrate effect 
on survival was independent of HDAC inhibition (see online 
supplementary figure 6).

The phylum Proteobacteria and the genera Escherichia/
Shigella and Streptococcus are increased in patients with 
pancreatitis in association with a decrease in butyrate-
producing strains
Next, faecal samples from patients with pancreatitis were anal-
ysed and compared with healthy volunteers (HV). Fifteen HV 
and 35 patients with AP including 26 patients with MAP and 
9 patients with SAP were included in the study. 16S rRNA 
analysis demonstrated that the microbiota composition of AP 
and HV groups differed (p=0.001), with a decrease of alpha 

diversity (p<0.0001) in AP (see online supplementary figure 
7). The phylum Proteobacteria was present at high frequency in 
patients with pancreatitis (figure 9A,B) with a 13-fold increase as 
compared with HV. At the genus level, there were 100-fold and 
10-fold increase in Escherichia/Shigella (figure 9C,D) and Strep-
tococcus (figure  9E), respectively. Most importantly, butyrate 
producers were significantly decreased in patients with AP 
(both MAP and SAP) as compared with control HV (twofold) 
(figure 9F).

DISCUSSION
Among patients with AP, secondary infection of the gland with 
necrosis is a potentially fatal clinical complication that typically 
necessitates radiological, endoscopic or surgical intervention.25–27 

Figure 9  16S rRNA analysis of human samples. (A) Relative abundance of microbiota at the phylum level in faeces of 15 healthy volunteers (HV) 
and 36 patients with acute pancreatitis (AP) including 26 patients with mild AP (MAP) and nine patients with severe AP (SAP). (B) Proteobacteria was 
signi�cantly increased in AP compared with HV (p=0.0002). No differences were observed between MAP and SAP (p=0.224, both by Mann-Whitney 
test). (C) Relative abundance of microbiota at the genus level. Blautia, Akkermansia and Escherichia/Shigella were among the dominating species in 
MAP while Escherichia/Shigella, Enterococcus and Streptococcus—in patients with SAP. In two patients with SAP, a near monoculture community was 
observed at the genus level (Enterococcus and Streptococcus) as indicated by arrows. (D) Relative abundance of Escherichia/Shigella was signi�cantly 
increased in AP compared with HV (p<0.001). No differences between MAP and SAP (p=0.540, both by Mann-Whitney test). (E) Relative abundance 
of Streptococcus was signi�cantly increased in AP compared with HV (p=0.003), and in SAP compared with MAP (p=0.047, both by Mann-Whitney 
test). (F) Relative abundance of butyrate producers was signi�cantly decreased in patients with AP as compared with HV (p<0.001). When strati�ed 
for severity, no statistical difference was found between MAP and SAP (p=0.100, both by unpaired t-test). *p<0.05; **p<0.01; ***p<0.001, ns, not 
statistically signi�cant.
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Despite recent advancements in the treatment of infected necro-
tising pancreatitis—such as the step-up approach28 and minimal 
invasive endoscopic procedures29—it is still a life-threatening 
condition with high morbidity and mortality, requiring long 
hospital—and ICU admissions.30 To date, there are no effective 
prophylactic strategies to prevent infectious complications in 
AP. The present study demonstrated that diet-induced distur-
bances in the gut microbiota aggravated infections in experi-
mental necrotising pancreatitis, evidenced by increased bacterial 
dissemination, systemic inflammation and mortality in mice that 
were fed a WD, as compared with control mice on a SD. These 
findings were associated with a decrease in bacterial diversity 
and the butyrate-producing capacity of the gut microbiota. 
Surprisingly, treatment with faecal transplants (FMT) increased 
mortality and bacterial translocation, perhaps owing to the 
known altered intestinal permeability in patients31 and animal 
models of AP.32–36 It is possible that gavaging FMT in this model 
could have resulted in some of its members directly entering the 
pancreatic duct. Prior work by others has demonstrated that oral 
gavage of bacteria can cause pancreatic contamination via reflux 
into the pancreatic duct.37 While this is certainly a possibility 
in the present study, given the low relative abundance of the 
contaminating pancreatic pathogens present in the introduced 
FMT, compared with the extremely high dose used in the study 
by Pushalkar, this mechanism seems less likely. An alternative 
explanation for the failure of FMT to protect in this model may 
be a function of the known perturbations in the intestinal micro-
environment created by a WD and hence could have enhanced 
the virulence of the administered pathogens present in the FMT. 
Further experiments are needed to clarify the mechanism by 
which FMT worsened outcome in this model.

In contrast, supplementation of butyrate—both oral prophy-
lactic treatment and systemically postpancreatitis treat-
ment—showed a protective effect with a clear reduction of 
bacterial dissemination, serum endotoxin levels and mortality, 
and an increase of expression of genes involved in paracel-
lular (tight) junctions. Butyrate promotes the enhancement of 
the intestinal barrier38 thus preventing bacterial dissemination 
and endotoxin permeation. Additionally, butyrate may enhance 
immune clearance mechanisms at the systemic level via Interferon 
Regulatory Factor 3 (IRF3) as has been recently demonstrated.39

We have previously shown that in both humans and mouse 
models of acute physiological stress, the gut microbiome 
becomes dramatically altered in composition and function 
resulting in a major loss of the anaerobic populations (>90%), 
depletion of SCFAs (>90%) and overgrowth of Proteobacteria 
(ie, E. coli).5 39–41 Our current data suggest that diet-independent 
enrichment of ribose, a substrate that can serve as sole energy 
source for E. coli,42 may in part explain gastrointestinal over-
growth of E. coli in our model. The precise mechanisms for this 
response, however, remain unknown and under investigation.

This study is in agreement with a growing body of evidence 
demonstrating the protective role of the healthy intestinal micro-
bial ecosystem to defend against both low abundance endoge-
nous microbiota that can bloom under conditions such as ANP 
as well as against invading exogenous pathogens.5 43–45 Butyrate, 
a SCFA produced by gut commensals, is the main energy source 
for colonocytes, in contrast to long-chain fatty acids that are only 
poorly used.46 Our study showed a highly significant depletion 
of SCFAs, carbohydrates and amino acids, which are associated 
with WD feeding and ANP. Conversely, there was an increase 
of long-chain fatty acids oleic acid, methyl oleate and palmi-
toleic acid. Based on these results, one might hypothesise that 
a lack of utilisable metabolic substrates and an increase of bile 

acids lead to atrophy, inflammation and an increased intestinal 
permeability. Providing a critical energy source likely contrib-
utes to the attenuated bacterial dissemination and mortality that 
was observed with butyrate supplementation. This is supported 
by recent evidence that shows that oral butyrate supplementa-
tion partially reversed increased gut permeability and dysbiosis 
caused by feeding a high-fat WD.47 48

Recent studies have shown that SCFAs can provide protec-
tion against Clostridium difficile collitis49 and colonisation 
with Salmonella50 and Candida albicans.51 Butyrate regulates 
macrophage function through HDAC inhibition and drives them 
towards an antimicrobial phenotype during maturation.24 52 
These immunological antimicrobial effects, mediated by HDAC 
inhibition, might underlie the mechanism for attenuation of 
ANP with systemic butyrate in our model. However, treatment 
with TSA, a potent HDAC inhibitor, did not provide protec-
tion in our model. Selectivity of butyrate and TSA for HDAC 
classed differ, demonstrated by the fact that intestinal epithelial 
cells respond differently in their presence. Another explanation 
is the added effects of butyrate on the immune response, gut 
permeability and locally on the gut microbiota. Further work is 
needed, however, to fully rule out the beneficial effect of HDAC 
inhibitors in this model.

In the present study, an attempt was made to define the role 
of the microbiota and their metabolites in the pathogenesis of 
ANP and secondary pancreatic infection. Furthermore, adding 
multiple antibiotics to these patients over the long course of 
illness can add to the already comprised state that leads to a 
bloom in multidrug-resistant organisms that complicate the 
overall course of the disease. In 1995, Luiten et al53 published 
a clinical trial where they randomised 102 patients with SAP 
to either standard treatment or standard treatment with selec-
tive oral decontaminating agents for Gram-negative bacteria 
(norfloxacin, colistin, amphotericin, cefotaxime) and showed 
reduced mortality and infections in the treatment group. 
Although it seems effective, the mechanism of action of selec-
tive digestive decontamination in AP remains poorly described. 
However, the increase of Gram-positive blood-stream infections 
in this study demonstrates the possibility of a classic trade-off 
scenario with the overuse of antibiotics. Selective pressure for 
low-abundance Gram-positive pathogens can cause overgrowth 
of these pathogens, induce multidrug-resistance and uninten-
tionally cause lethal infections. This indicates that there is a clear 
need for microbiota modulating therapies that are supporting 
the native, commensal microbial communities, as opposed to 
antibiotics that induce multidrug-resistant pathobionts.5

Recently, the US Food and Drug Administration issued a safety 
alert for the use of FMT after reports of serious adverse effects, 
including one death, due to infections with multidrug-resistant 
bacteria.54 Our findings further indicate that extreme caution 
is warranted when considering administration of live bacteria 
in a clinical or experimental setting to this severely ill patient 
population. The therapeutic use of so-called postbiotics—bacte-
rial metabolites or components that are released when bacteria 
are lysed—are becoming increasingly popular targets because of 
their potential potency and beneficial safety profile.55 56

In summary, results from the present study provide compel-
ling evidence that diet and its interaction with the intestinal 
microbiota can have a profound effect on the course and 
outcome of ANP. Results from this study also define the limits 
and risks of using FMT and antibiotics to prevent mortality 
from ANP in WD mice. Novel approaches to prevent the 
progression of patients who present with clinical pancreatitis 
to infected pancreatic necrosis can be informed by this study, 
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which suggests that nutrient availability—amongst other post-
biotics such as butyrate—to the microbiota may be a more 
rational strategy.
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