Do proton pump inhibitors influence SARS-CoV-2 related outcomes? A meta-analysis

The article by Lee et al1 showed that the current use of proton pump inhibitors...
(PPIs) increased the risk of severe clinical outcomes of COVID-19 rather than the susceptibility to SARS-CoV-2 infection in a Korean nationwide cohort. Instead, a significant association between susceptibility to PPIs and infection and current use of PPIs, either one time or two times a day, was found by another recent study² based on US nationwide data. The conflicting results of these two large-scale observational studies may be due to regional epidemiological differences or considerable between-study variance and might compromise clinical decision-making. As the impact of PPI use on SARS-CoV-2 infection has very relevant clinical implications, we performed a meta-analysis to address the aforementioned discrepancies, which could lead to better informed clinical decision-making on PPI use during the ongoing pandemic.

We scrutinised 3413 records retrieved from a comprehensive search using the COVID-19 Research Articles Downloadable Database maintained by the US CDC (https://www.cdc.gov/library/researchguides/2019novelcoronavirus/researcharticles.html) and ultimately included 16 studies¹–¹⁶ from 10 countries or regions reporting comparative data on PPI use and clinical outcomes of COVID-19 (online supplemental figure 1 and table). We pooled the data using an inverse variance-weighted random-effect model. Pooled estimates are presented as OR, HR or mean difference (MD), with associated 95% CIs. Intensive care unit admission, mechanical ventilation, acute respiratory distress syndrome or death were considered severe outcomes of COVID-19.

Six studies¹–⁶ including 318261 participants reported data on PPI usage and the risk of SARS-CoV-2 infection. Among them, five studies had information of current PPI users compared with non-users and four on past PPI users versus non-users. Analysis of five studies¹–⁵ encompassing 145428 patients who were tested for SARS-CoV-2 showed that the risk of SARS-CoV-2 infection was higher, although not significantly, among current PPI users (OR 1.33, 95% CI 0.86 to 2.07, p=0.20; figure 1) compared with PPI non-users, with evidence of substantial between-study heterogeneity (I²=97%). Moreover, in a subgroup analysis of non-Korean cohorts,²–⁴ we found a significant association between current use of PPIs and increased risk of SARS-CoV-2 infection (OR 1.94, 95% CI 1.59 to 2.36, p<0.001; online supplemental figure 2). Furthermore, a leave-one-out sensitivity analysis revealed that the summary estimate of the association between current PPI usage and SARS-CoV-2 infection was overly influenced by a single Korean study⁵ (online supplemental figure 3). Instead, current or regular PPI users were more likely to have severe outcomes of COVID-19 than PPI non-users, with a pooled OR of 1.67 (95% CI 1.19 to 2.33, p=0.003; n=42405 from nine studies;¹ ³ ⁷–¹³ I²=63%; figure 2) and a pooled HR of 1.87 (95% CI 1.29 to 2.70, p<0.001; online supplemental figure 2). Furthermore, a leave-one-out sensitivity analysis revealed that the summary estimate of the association between current PPI usage and SARS-CoV-2 infection was overly influenced by a single Korean study² (online supplemental figure 3).

Instead, current or regular PPI users were more likely to have severe outcomes of COVID-19 than PPI non-users, with a pooled OR of 1.67 (95% CI 1.19 to 2.33, p=0.003; n=42405 from nine studies;¹ ³ ⁷–¹³ I²=63%; figure 2) and a pooled HR of 1.87 (95% CI 1.29 to 2.70, p<0.001; n=2977 from two studies;¹⁵ ¹⁶ I²=80%; figure 2). These results were consistent with our leave-one-out sensitivity analysis (online supplemental figure 4), indicating that this association was strong.
current PPI users tended to hospitalised longer than PPI non-users, although not by a statistically significant margin (n=353 from two studies; \(OR \) 0.85, 95% CI 0.57 to 1.27, \(p=0.79 \); figure 2). Finally, past use of PPIs was not associated with increased susceptibility to SARS-CoV-2 infection (\(n=172,833 \) from four studies; \(OR \) 0.85, 95% CI 0.57 to 1.23, \(p=0.79 \); \(I^2=92\% \); figure 1) or with severe outcomes of COVID-19 (\(n=40,097 \) from three studies; \(OR \) 1.03, 95% CI 0.85 to 1.23, \(p=0.79 \); \(I^2=0\% \); figure 2).

In summary, this meta-analysis shows that regional differences can explain the heterogeneous findings concerning the association between current PPI use and incidence of SARS-CoV-2 infection and further underscores the increased risk of severe COVID-19 outcomes associated with current PPI use, highlighting that caution should be exercised when treating patients receiving PPIs during the COVID-19 pandemic. Further studies investigating different dosing regimens and durations of PPI use on COVID-19 outcomes should be warranted.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Gut: first published as 10.1136/gutjnl-2020-323366 on 10 November 2020. Downloaded from http://gut.bmj.com/ on September 15, 2022 by guest. Protected by copyright.