heartburn intensity at 8 weeks compared to baseline was measured. A successful PPI response was defined as >50% improvement in heartburn intensity at 8 weeks compared to baseline.

**Results** Normal value cutoffs were determined as 3.0% for mean acid exposure, 4.5% for worst day acid exposure, and 9.2 for mean DeMeester score. There was no difference in heartburn improvement after 8 weeks PPI between patients with pathological and physiological acid exposure whether pathological reflux was determined by mean acid exposure (heartburn improvement 33.8%+36.6 vs. 26.6%+33.8, mean +s.d. p=0.4), worst day acid exposure (32.1+39.4 vs. 25.8 +34.7, p=0.6), or by mean DeMeester score (33.7+36.3 vs. 26.5+35.6, p=0.4). Successful PPI response had a 77.5% positive predictive value for GORD, and only a 38.3% negative predictive value.

**Conclusions** Wireless pH study parameters in a large group of patients with heartburn referred for reflux testing show that PPI response is inadequate to make a diagnosis of reflux disease. Our data show that a large number of patients referred despite PPI response do not have reflux disease and should be weaned from the medication. An even larger proportion of patients do not have PPI response yet have pathological reflux and could be offered alternate management strategies.

**Abstracts**

**P238 AUTOFLOURESCENCE-TARGETED CONFOCAL ENDOMICROSCOPY VERSUS WHITE-LIGHT FOR BARRETT’S OESOPHAGUS DYSPLASIA DETECTION: A MULTI-CENTRE RANDOMISED CROSS-OVER STUDY**

1,2Mathew Vithayathil*, Ines Modoleli, Jacob Ortiz, Wilad Januszewicz, Apostolos Pappas, Michele Bianchi, Geoffrey Roberts, Samantha Warburton, Phillip Kaye, Andreas Hadjinicolaou, Maria O’Donovan, Prof Kris Ragunath, Lorenz Wemisch, Massimiliano Di Pietro, MRC Cancer Unit, Cambridge, UK; Cambridge University Hospitals, UK; NIHR Nottingham Biomedical Research Centre, UK 10.1136/gutjnl-2020-bsgcampus.312

**Introduction** Dysplasia in Barrett’s oesophagus (BO) is often invisible at white light endoscopy (WLE) and Seattle protocol is labour intensive. There is lack of randomised evidence that advanced imaging improves dysplasia detection. Probe-based confocal endomicroscopy (pCLE) is accurate for high-grade dysplasia (HGD) and intramucosal cancer (IMC) associated to visible lesions, but due to the narrow field requires combination with a red-flag technique for long-segment inconspicuous BO. We aimed to assess the diagnostic accuracy of optical biopsy by pCLE targeted by autofluorescence imaging (AFI) for any grade of dysplasia in patients without visible lesions.

**Methods** In this prospective multi-centre randomised cross-over trial BO patients were randomised to WLE with Seattle protocol (standard arm) https://mail.addenbrookes.nhs.uk/owa/auth/logon.aspx?replaceCurrent=1&utm=url=https%3a%2F%2Fmail.addenbrookes.nhs.uk%2Fowa%2F for AFI-directed pCLE (experimental arm), and crossed over to the other arm after 6–12 weeks. The experimental arm consisted of (i)WLE inspection (ii)AFI to flag endoscopic areas (iii)pCLE on AFI areas and (iv)targeted biopsies. The 6 endoscopists were blinded to referral histology. Patients with unequivocal neoplastic lesions on WLE were excluded. Two GI pathologists confirmed histological diagnoses. The primary outcome was real-time diagnosis of dysplasia by pCLE. Two histological endpoints were analysed: (a) trial histology from all study biopsies; (b) overall histology, which included (a) + biopsies within the 12 months of enrolment. Secondary outcomes included procedural time.

**Results** 133 patients completed both arms. 27.8% of patients received a diagnosis of dysplasia (LGD; n=19, HGD/IMC; n=18). In primary analysis (trial histology), pCLE had a sensitivity and specificity for dysplasia of 73.0% and 68.8%, respectively and 72.2% and 61.7% for HGD/IMC. Seattle protocol had a sensitivity of 73.0% for dysplasia and 83.3% for HGD/IMC, with no significant difference between arms. In secondary analysis (overall histology), pCLE had a similar sensitivity to Seattle protocol for dysplasia (61.8% vs. 49.1%; p=0.09) and HGD/IMC (70.0% vs 50.0%; p=0.11). The procedural time in the experimental arm was longer than standard arm (Mean mins 22.3 vs. 16.4; p<0.05), with evidence of learning curve (Q4 vs Q1 27.0 vs 19.0; p<0.05).

**Conclusions** In combination with AFI, pCLE detects inconspicuous dysplasia in approximately three quarters of cases. pCLE has equal diagnostic accuracy for dysplasia compared to Seattle protocol dispensing extensive sampling but at expense of longer procedural time.

**P239 X-RAY PHASE CONTRAST IMAGING FOR STAGING OESOPHAGEAL TUMOURS: PRELIMINARY RESULTS FROM THE VIOLIN STUDY**

1,2Paul Wolfson*, 1Charlotte Maughan-Jones, 1Jinxing Jiang, 1,2Alexander Ho, 1Hazel McIlain, 1Harry Delaney, 1Adam Levine, 1Mark Hawthorne, 1Lorenzo Massimi, 1Ash Wilson, 1Khaleed Dawais, 1Bozouei Mohammad, 1Yasar Qureshi, 1Majid Hashemi, 1Matthew Banks, 1David Graham, 1Rami Sweis, 1Rehan Hairdy, 1Sarmad Sami, 1Marco Endrizzi, 1Peter Munro, 1Charlotte Hagen, 1Manli Chouhan, 1Stuart Taylor, 1Marco Novelli, 1Alessandro Olivo, 1Laurence Lovat, 1University College London, London, UK; 2University College London Hospital, London, UK 10.1136/gutjnl-2020-bsgcampus.313

**Introduction** Oesophageal cancer is the 7th commonest cause of cancer death worldwide. Radiological staging of local oesophageal cancer is inaccurate. CT currently relies on attenuation of x-rays to generate contrast. Soft tissues have very similar attenuation properties so minimal contrast is generated. X-ray phase contrast imaging (XPCI) uses refraction of x-rays as they pass through tissue instead of attenuation and provides much higher soft tissue contrast. This technology can be tuned to a resolution of approximately 10 μm. This may allow for easy assessment of extent of disease infiltration.

We aimed to use XPCI to image oesophagectomy specimens to assess pathological tumour and nodal stage for oesophageal cancer.

**Methods** Following ethical approval, 10 oesophagectomy specimens were obtained from patients having surgery for oesophageal cancers. These included both squamous and adenocarcinomas.

Specimens were fixed in formalin for 12 hours. Sutures were placed through tissue to enable co-registration between CT slices and histology sections. For some scans, tissue was then dehydrated with graded ethanol for between 4.5 hours and 72 hours before being imaged. A Rigaku (MicroMax 007) x-ray source was used at 40 kV and 20 mA; a detector with 50μm pixel size; and sample and detector masks made of graphite substrate with gold overlay. Phase contrast was generated using edge illumination technique.