Abstract P333 Figure 1 ROC for BMI predicting pathological reflux on WBM

and the NPV for absence of GORD on WBM when BMI>2100Ω is 90.7%.

Conclusion Patients with normal ZPM and a BMI ≤2100Ω increases the likelihood of pathological reflux on WBM monitoring. We recommend this category of patients to be considered for WBM.

REFERENCES

Abstract P334 Table 1 oesophageal transit time (minutes) in control and patient groups

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean (median)</th>
<th>Standard deviation</th>
<th>5%-95%CI</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>38</td>
<td>0.37 [0.32]</td>
<td>0.14</td>
<td>0.32 – 0.41</td>
<td>0.15–0.78</td>
</tr>
<tr>
<td>OGJOO</td>
<td>40</td>
<td>2.53 [2.6]</td>
<td>0.88</td>
<td>2.26 – 2.81</td>
<td>0.73–3.90</td>
</tr>
<tr>
<td>Achalasia</td>
<td>42</td>
<td>37.7 [36]</td>
<td>21.12</td>
<td>34.4 – 47.3</td>
<td>5.6–84</td>
</tr>
</tbody>
</table>

Statistical Prism software was used to plot receiver operating curve (ROC) to ascertain critical oesophageal transit time between control group and patient groups. Appropriate t-test and Fisher exact tests were employed to assess statistical significance.

Results Total number of 117 patients were selected (F: M=74:43, age 18–84 years old). There was statistical significant differences in the MIIT comparing the control group against OGJOO group (p<0.0001) and against the achalasia group (p<0.0001). Statistical differences were also found by comparing OGJOO and achalasia patient groups (p<0.0001). The descriptive statistical data are documented in table 1.

According to the ROC analysis, oesophageal transit time of 0.76 mins will differentiate between normal and OGJOO disorder (sensitivity=91.2%–100%, specificity=86.2%-99.9%). Oesophageal transit time of 3.9 mins will differentiate between OGJOO and achalasia (sensitivity=91.6%-100%, specificity=86.8%-99.9%).

Conclusion MIIT can differentiate patients with normal oesophageal motility and obstructive disorders. Therefore, there is a provision for using this method which is readily available during reflux monitoring as an alternative to barium swallow.

REFERENCES

P335 MULTICHANNEL INTRALUMINAL IMPEDANCE TRANSIT TESTING IN PATIENTS WITH FUNCTIONAL DYSPHAGIA

Introduction Dysphagia symptoms cannot always be explained by endoscopy or radiology investigations and clinicians may refer their patients for high-resolution manometry (HRM) when suspecting motility related dysphagia. There are a cohort of patients for whom HRM also could not explain their dysphagia. In this study, we perform the multichannel intraluminal impedance transit (MIIT) study to assess the oesophageal transit time (OTT) in patients with unexplained dysphagia.

Method Patients were selected between January 2018 and December 2019 who had normal oesophageal motility testing according to Chicago Classification (CC) and underwent MIIT testing by drinking 200 mL of saline to measure the OTT. Patients were then categorised into dysphagia group (patient group) and asymptomatic of dysphagia group (control group).

Abstract P335 Table 1 oesophageal transit time (minutes) in control and patient groups

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean (median)</th>
<th>Standard deviation</th>
<th>5%-95%CI</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>38</td>
<td>0.37 [0.32]</td>
<td>0.14</td>
<td>0.32 – 0.41</td>
<td>0.15–0.78</td>
</tr>
<tr>
<td>OGJOO</td>
<td>40</td>
<td>2.53 [2.6]</td>
<td>0.88</td>
<td>2.26 – 2.81</td>
<td>0.73–3.90</td>
</tr>
<tr>
<td>Achalasia</td>
<td>42</td>
<td>37.7 [36]</td>
<td>21.12</td>
<td>34.4 – 47.3</td>
<td>5.6–84</td>
</tr>
</tbody>
</table>

Dysphagia patients were categorised to control group and dysphagia patients were categorised into OGJ outflow obstruction (OGJOO) and achalasia groups.

Statistical Prism software was used to plot receiver operating curve (ROC) to ascertain critical oesophageal transit time between control group and patient groups. Appropriate t-test and Fisher exact tests were employed to assess statistical significance.

Results Total number of 117 patients were selected (F: M=74:43, age 18–84 years old). There was statistical significant differences in the MIIT comparing the control group against OGJOO group (p<0.0001) and against the achalasia group (p<0.0001). Statistical differences were also found by comparing OGJOO and achalasia patient groups (p<0.0001). The descriptive statistical data are documented in table 1.

According to the ROC analysis, oesophageal transit time of 0.76 mins will differentiate between normal and OGJOO disorder (sensitivity=91.2%–100%, specificity=86.2%-99.9%). Oesophageal transit time of 3.9 mins will differentiate between OGJOO and achalasia (sensitivity=91.6%-100%, specificity=86.8%-99.9%).

Conclusion MIIT can differentiate patients with normal oesophageal motility and obstructive disorders. Therefore, there is a provision for using this method which is readily available during reflux monitoring as an alternative to barium swallow.

REFERENCES