IAA disrupts mitochondrial oxidative phosphorylation program via the Akt/mTOR axis, thereby suppressing the differentiation of ISC and organoid formation (IDDF2021-ABS-0074 Figure 6, IDDF2021-ABS-0074 Figure 7). Activation of Akt reverses IAA-induced impairment of mitochondrial energetics, stem cell maintenance and epithelial renewal in chronically-stressed mice (IDDF2021-ABS-0074 Figure 8).

Conclusions Our results connect gut dysbiosis and IAA to ISC dysfunction during psychological stress and suggest that modulating gut microbial metabolism may prevent the gut from the deleterious effect of stressful events.

Background LncRNA was known to be closely associated with the progression of human tumors. The role of new LncRNA TNFRSF10A-AS1 in the pathogenesis and progression of gastric cancer is still unclear. The aim of this study was to investigate the function of TNFRSF10A-AS1 and the underlying mechanism in the pathogenesis and progression of gastric cancer.

Methods The clinical impact of TNFRSF10A-AS1 was assessed in 105 patients with gastric cancer. The biological function of TNFRSF10A-AS1 was studied in vitro and in vivo. TNFRSF10A-AS1 downstream effector were identified by RNA FISH, RNA sequencing, RNA pulldown and rescue assay.

Results TNFRSF10A-AS1 was upregulated in gastric cancer cell lines and tissues. Multivariate analysis showed that gastric cancer patients with TNFRSF10A-AS1 overexpression had a significantly shortened survival. TNFRSF10A-AS1 significantly promoted gastric cancer cell proliferation, cell-cycle transformation, and migration/invasion, but suppressed cell apoptosis. Silencing TNFRSF10A-AS1 expression exerted opposite effects in vitro and significantly inhibited xenograft tumor growth in nude mice. Mechanically, TNFRSF10A-AS1 directly bound to MPZL1 and activated MPZL1 transcription. Knockdown MPZL1 abrogated the effect of TNFRSF10A-AS1 in the tumor-promoting function.

Conclusions TNFRSF10A-AS1 directly binds to oncogenic MPZL1 to induce its expression. TNFRSF10A-AS1 plays a pivotal oncogenic role in gastric carcinogenesis and is an independent prognostic factor for gastric cancer patients.

Background The bacterium Klebsiella pneumoniae of family Enterobacteriaceae is a well-known opportunistic pathogen that colonizes intestinal and respiratory tract. While K. pneumoniae is a common cause of nosocomial and community-acquired infections, including diarrhea, pneumonia and pyogenic liver abscess, little is known about the population structure of this bacterium. Thus it is likely that the epidemiological characteristics of K. pneumoniae isolate from carriers and clinic patients, when combined to their genomic information, might provide some insight into pathogenic Klebsiella prevention and control.

Methods Two hundred and thirty-two K. pneumoniae isolates (including 38 isolates from carriers, 124 isolates from pyogenic liver abscess patients and 70 isolates from pneumonia patients) were collected from 9 provinces of China in 2013-2020. Sequencing was performed on the Illumina Hiseq PE150 platform, and the genome sequences were assembled by SOAP denovo. Multilocus sequence typing (MLST) analysis was done by submitting sequences to the Institute Pasteur K. pneumoniae MLST database. Pan-genome analysis was performed by software Snippy, Gubbins and Roary, and the gene contents were identified by software VFanalyzer, Resfinder and PlasmidFinder.

Results The 232 isolates were subtyped into 74 STs. The isolates from different sources have their own STs, and the predominant subtypes of liver abscess patients and pneumonia patients were ST23 and ST11, respectively. PCA analysis (p = 0.001) on accessory gene content also distinguished the three phylogroups, which are consistent with the source of isolates. The isolates collected from liver abscess patients carried significantly more (p = 0.000) virulence factors, and the isolates sourced from pneumonia patients harbored significantly more (p = 0.000) resistance genes and replicons. Besides, there was a strong link between Salmonchelin and the isolates sourced from liver abscess patients. Ninety-eight percent isolates of liver abscess strongly correlated STs and only two percent isolates of pneumoniae correlated STs carried Salmonchelin.

Conclusions These data provide genomic support for the proposal that isolates collected from carrier, liver abscess and pneumoniae patients have their distinct genomic features. And the isolates from different sources are largely nonoverlapping.