Background The outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has become a global health emergency. We aim to decipher SARS-CoV-2 infected cell types, the consequent host immune response and their interplay in the lung of COVID-19 patients.

Methods We analyzed single-cell RNA sequencing (scRNA-seq) data of bronchoalveolar lavage fluid (BALF) samples from 10 healthy donors, 6 severe COVID-19 patients and 3 mild recovered patients. The expressions of SARS-CoV-2 receptors (ACE2 and TMPRSS2) were examined among different cell types. The immune cells infiltration patterns, their expression profiles, and interplays between immune cells and SARS-CoV-2 target cells were further investigated.

Results Compared to healthy controls, ACE2 and TMPRSS2 expressions were significantly higher in lung epithelial cells of COVID-19 patients, in particular club and ciliated cells. SARS-CoV-2 activated pro-inflammatory genes and interferon/ cytokine signaling in these cells. In severe COVID-19 patients, significantly higher neutrophil, but lower macrophage in the lung was observed along with markedly increased cytokines expression compared with healthy controls and mild patients. By contrast, neutrophil and macrophage returned to normal level whilst more T and NK cells accumulation were observed in mild patients. Moreover, SARS-CoV-2 infection altered the community interplays of lung epithelial and immune cells: interactions between the club and immune cells were higher in COVID-19 patients compared to healthy donors; on the other hand, immune-immune cells interactions appeared the strongest in mild patients.

Conclusions SARS-CoV-2 could infect lung epithelium, alter communication patterns between lung epithelial cells and immune system, and drive dysregulated host immune response in COVID-19 patients.

Basic Hepatology

IDDF2021-ABS-0145 TURNING IMMUNOLOGICALLY COLD TUMORS INTO HOT ONES BY ACTIVATING HEPATOMA-INTRINSIC FADD/NF-KB/CCl5 PATHWAY

Jiahuan Lu*, Jing Wang, Yalin Tu, Weiqin Yang, Wenshu Tang, Zhewen Xiong, Alfred Sz-Lok Cheng, Anthony Wing-Hung Chan, Ka-Fai To. Chinese University of Hongkong, Hong Kong

Background Lymphoepithelioma-like hepatocellular carcinoma (LEL-HCC) as a distinct variant of HCC displayed immunologically hot tumor features with prominent tumor-infiltrating CD8+ T lymphocytes (TILs). Our whole exosome sequencing data found an increased prevalence of chromosome 11q13.3 amplification in LEL-HCC, in which contains fas-associated death domain (FADD) that displayed a strongest positive correlation with differentially expressed genes function in TIL migration. We hence aim to elucidate the functional roles and molecular mechanisms of hepatoma-intrinsic FADD in regulating TIL abundance in general HCC patients.

Methods FADD-overexpressed HepG2 (FADD-oe) and FADD-knockdown huh7 cells (FADD-kd) were constructed to investigate cell growth rate by colony formation and MTS assay in vitro, subcutaneous tumor in immunodeficient nude and NOD/SCID mice in vivo. A co-culture model of human peripheral blood-derived CD8+ T cells and HepG2-oe or Huh7-kd in vitro, T cell adoptive transfer and humanized mouse models in vivo were used to detect T migration preference. The downstream functional chemokines and molecular pathways controlled by FADD were determined by RT-qPCR, ELISA, western blot as well as gene modulation assays. Finally, were used to identify metabolites and bacterial markers discriminating CRC stages. Associations among CRC-associated metabolites and bacteria were estimated with zero-inflated negative binomial regressions analysis.

Results Principal component analysis and partial least squares-discriminant analysis showed differences in the gut metabolite profiles among CRC, CRA and NC groups. Norvaline and myristic acid showed increasing trends from NC, through CRA, to CRC. CRC-associated metabolites were enriched in branched-chain amino acids and aminoacyl-tRNA biosynthesis pathways. Twenty metabolites classified CRC from NC subjects with an area under the curve (AUC) of 0.80, and CRC from CRA with AUC of 0.79. Combinations of metabolites and bacterial markers improved the diagnostic performances (CRC vs NC, AUC: 0.94; CRC vs CRA, AUC 0.92; CRA vs NC, AUC: 0.86), indicating a potential for early diagnosis of colorectal neoplasia. Moreover, relationships among CRC-associated metabolites and bacteria were altered across CRC stages; certain associations exhibited increasing or decreasing strengths while some were reversed from negative to positive or vice versa.

Conclusions Gut metabolites are altered in colorectal carcinogenesis. The combination of metabolites and bacterial species can increase the chance of a non-invasive diagnosis of colorectal neoplasia.

Gut 2021;70(Suppl 2):A1–A150

Gut: first published as 10.1136/gutjnl-2021-IDDF.7 on 2 September 2021. Downloaded from http://gut.bmj.com/ on July 11, 2022 by guest. Protected by copyright.
the associations among FADD (Fadd) expression, TIL proportion and patient prognosis or tumor development were evaluated by NanoString/immunohistochemistry analysis in HCC patients or RT-qPCR/flow cytometry in orthotopic HCC mouse models.

Results CD8+ T cell migration rate was significantly enhanced in FADD-oe tumors, but reduced in FADD-kd tumors in both HCC cells-T cell co-culture system in vitro and subcutaneous tumor models in vivo. Mechanistically, FADD activated NF-κB, which in turn promoted T cell trafficking chemokine CCL5 production. Furthermore, Fadd expression was positively correlated with CcL5 and TIL proportions, but negatively correlated with orthotopic HCC tumor weights. As we showed that FADD was positively correlated with CD8+ T cells in HCC patients, our data pinpointed that FADD controls TIL abundance in HCC.

Conclusions Our findings reveal an underlying mechanism of TIL accumulation in HCC, which provides a novel strategy of FADD activation in turning immunologically cold tumors into hot ones for better prognosis and immunotherapeutic responses.