and was not adversely impacted by the COVID-19 pandemic. Patients do not need to travel to central hubs, and can remain under the care of their local hepatologist maintaining continuity of care and also promoting their involvement in decision making process. However, monitoring of 6- and 12-month response after starting OCA can be challenging as it is reliant on receiving follow-up data from the referring clinician. OCA dose must be adjusted based on the stage of liver disease and presence of pruritus.

REFERENCE


P090

ASSESSING DOCUMENTATION OF ASCITIC PARACENTESIS IN LANCASHIRE TEACHING HOSPITALS NHS TRUST

Mustafa Afifi, Amr Elseby, Goon May Hong*. Lancashire Teaching Hospitals NHS Trust, Chorley, UK

10.1136/gutjnl-2021-BASL.98

Ascites is a common presentation of decompensated liver cirrhosis and is associated with 50% mortality over 2 years.1 Although complication rates of paracentesis are low (1.6%) and usually mild, significant complications including bleeding and death can ensue.2

The aim of the study was to measure the Lancashire Teaching hospitals NHS Trust’s compliance for paracentesis documentation using the British Society of Gastroenterology and British Association of study of liver disease’s paracentesis safety toolkit.3 The study involved retrospectively collected data from patients between January and April of 2020. A total of 13 patients were identified in keeping the inclusion criteria (known liver cirrhosis patients admitted with large volume ascites).

We found poor documentation practices involving procedure in the person performing procedure (84%), consent (53%), pre-procedure weight (15%), the plan for the amount of human albumin solution to be given (61%) and total given (38%), platelet count documentation (84%), recorded time of insertion (85%), color of the fluid drained (53%), and plan on when to remove the drain (61%). The audit also noted poor documentation post procedure including recorded time of removal (38%), total ascites drained (46%), and patient’s weight recorded after removal (0%).

An updated version of the BSG toolkit was designed (divided into 2 main forms; 1 for insertion and the other for removal of drain), which will be implemented on the wards as well as the local trust’s online system to aid documentation on the acute medical wards and emergency department. Furthermore, teaching sessions will be implemented to the medical and nursing staff rotations. Moreover, there is a plan to liaise with the education team to add a learning module on the induction for medical and nursing rotations.

This audit found poor documentation practices on a commonly performed procedure on the wards especially in patients with decompensated liver cirrhosis. The purpose of this audit was to highlight this and to point out that a unified documentation including all parameters should be present. This aids the clinicians in making decisions regarding patient care, enhances patients’ safety and prevents important information from being missed. In addition, this could potentially save time especially on ward rounds.

REFERENCES


P091

A COORDINATED NATIONAL RESPONSE MAINTAINED A SAFE AND EFFECTIVE UK LIVER TRANSPLANT PROGRAM DURING THE FIRST YEAR OF THE COVID-19 PANDEMIC

1Steven Masson*, 2Rhiannon Taylor, 3Any Adair, 4Michael Allison, 5Magdy Attia, 6Paul Gibbs, 7Tassoos Grammatikopoulos, 8John Isaac, 9Aileen Marshall, 2Darius Mirza, 1Andreas Prachalis, 2Raj Prasad, 3Maxine Tapp, 12Sarah Watson, 1Julie Whitney, 1Derek Manas, 1John Forsythe, 1Douglas Thorburn. 1Liver Transplant Unit, Freeman Hospital and Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; 1NHS Blood and Transplant, Stoke Gifford, Bristol, UK; 4Edinburgh Transplant Centre, Royal Infirmary Edinburgh, Edinburgh, UK; 1Liver Transplant Unit, Addenbrooke’s Hospital, Cambridge, UK; 1Liver Transplant Unit, St James’s University Hospital, Leeds, UK; 5Paediatric Liver, Gastrointestinal and Nutrition Centre and Mowat Labs, King’s College Hospital, London, UK; 5Liver Unit, Queen Elizabeth Hospital, Birmingham, UK; 1Liver Unit, Birmingham Children’s Hospital, Birmingham, UK; 6Sheila Sherlock Liver Centre and UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK; 5Liver Unit, Birmingham Children’s Hospital, Birmingham, UK; 7Highly Specialised Services, NHS England and NHS Improvement, UK

10.1136/gutjnl-2021-BASL.99

Background UK healthcare provision has been severely affected by the COVID-19 pandemic, with specific challenges in liver transplantation (LT). Here, we describe the co-ordinated response to, and impact of, the first year of COVID, across all 7 adult and 3 paediatric UK LT centres.

Methods A series of national policy changes affecting the LT process were agreed. A ‘high-urgent’ (HU) category was established, prioritising for LT those with UKELD >60, HCC reaching transplant criteria, and others likely to die within 90 days. Donor age restrictions and changes to offering were phased throughout the year. These changes were flexed in response to the ‘first wave’ (implemented: March–July 2020) and ‘second wave’ (implemented: Jan–April 2021). During the second wave, organ and patient ‘back-up’ arrangements were introduced, selected centres were designated ‘protected’ by

Abstract P089 Figure 2 Final prototype liver model (1:1.3 scale) with embedded vasculature and tumour (above) and endoscopic view of right hepatic vein inside model (inset)