Oesophagus

OFR-2 THE SPIT STUDY: CREATING A SALIVA BASED EPIDEMIC BIOMARKER PANEL TO DIAGNOSE OESOPHAGEAL CANCER


Introduction The SPIT study aims to investigate the methylation changes in saliva that result from oesophageal cancer with the ultimate aim of developing a diagnostic biomarker.

Methods We recruited volunteers with adenocarcinoma, intramucosal carcinoma, Barrett’s Oesophagus and High-Grade Dysplasia. We also recruited two distinct classes of control: healthy volunteers and people with no positive diagnosis of abnormalities after an endoscopy. Study participants completed an extensive questionnaire on relevant lifestyle factors and provided a saliva sample. We had the capacity to analyse 192 saliva samples from our wider cohort using two plates of a standard human methylation array technology. We performed stringent DNA quality-control on our samples and we selected case-control matched samples.

A series of quality-control measures were calculated for the array data. This necessitated the removal of 81 samples, leaving 111 samples for differential methylation analysis. Stringent batch-effect removal was applied by calculating the residuals of a batch-fitted linear model on each locus. Differential methylation analysis was performed on the residuals using standard Bioconductor packages (limma). In order to facilitate generalisation of the results, this process was repeated in a manner similar to hold-out cross validation, where a sub-cohort generates a model and the remaining left-out samples are used to test it. This was repeated over a thousand times. The loci that were the most often selected were used as a candidate classifier.

Results The 50 probes most frequently selected in repeated sub-sampling showed a marked pattern of separation between controls and adenocarcinoma, but individual probes also showed strong potential to function as a commercially viable biomarker to distinguish between cases and controls. Two probes in particular, which were both strongly implicated in oesophageal cancer in the literature, showed individual diagnostic success accuracies of 87.6% and 86.2% (calculated from AUC-ROC values). A candidate biomarker panel using just 4 probes was able to classify held-out samples with an accuracy of 94%, and a panel of 6 probes was able to achieve classification rates of 94%. Furthermore, this panel of 6 probes appeared to achieve optimal classification success, as the addition of further probes did not produce any tangible improvement of classification unless a more substantial set of probes were used (24 probes at 95% accuracy).

The biological plausibility of individual probes was further encouraging. It included probes that were strongly overexpressed in oesophageal cancer, and probes associated with genes implicated in oesophageal cancer survival. An additional probe was, interestingly, associated with a critical tumour-suppressive region with known importance in oesophageal squamous cell carcinoma.

Conclusions We have evidence that a commercially-viable candidate biomarker panel could be implemented to offer a first-pass screening method for oesophageal cancer. This would enable healthcare providers to implement intelligent prioritisation of resources at a time when it is an urgent priority.

OFR-3 EXTENDED WIRELESS PH MONITORING INCREASES GERD DIAGNOSES IN PATIENTS WITH A NORMAL PH IMPEDANCE STUDY

Sebastian Zeki*, Ismail Miah, Anna Wolak, Minerva deSilva, Jason Durr, Andrew Davies, Andrew Davies, Abrie Botha, Guiping Sui, Jafar Jafari, Terry Wong. Guy’s And St Thomas’ NHS Trust, London, UK

Conclusions There is a significant increased yield for GERD positive diagnoses with WPM after a negative impedance study which may be related to the presence of intermittent reflux in these patients. Predictability is difficult to ascertain from HRM or 24-hour pH impedance variables. The increased yield of gastro-esophageal reflux disease (GERD)-positive diagnoses with WPM is unknown. Also unknown is which parameters from the negative pH impedance or manometry, may predict a subsequent positive WPM test. Aim: a) Determine the increased yield and b) determine predictors of GERD positivity in patients with GERD-negative pH impedance.

Methods The increased GERD-positive diagnostic yield with WPM was determined in 181 consecutive patients who had undergone negative pH impedance with HRM. Univariate and multivariate analysis determined predictors of a positive WPM.

Results Of the 181 included, using average day analysis 61 studies were positive for GERD (Male : Female 26 : 35, average age of 47 (15) years and 120 negative for GERD (Male : Female 52 : 68 average age of 48 (13) years). This corresponds to 33.70% of the patients initially diagnosed as not having GERD, being given a diagnosis of GERD at WPM.

Using a worst day analysis, of the patients who were negative for GERD at impedance, 62 studies were positive at WPM (34.25%), 92% of the patients diagnosed with GERD on worst day analysis were also positive on average day analysis. 20 (33.33%) of patients classified as WPM-GERD-positive were positive for only 1 day. The number of studies that were negative for GERD in the first 24 hours and 48 hours of the WPM study was 19 (31.15%) and 11 (18.03%) respectively.

Using univariate analysis, significant differences were found for basal respiratory minimum (mmHg) (GERD positive: 8 (8), GERD negative: 10 (8) p=0.010), number of acid episodes (GERD positive: 20 (14) GERD negative: 12 (11) p=0.001) and acid exposure time (GERD positive: 1.70 (1.35) GERD negative: 1.07 (1.14) p=0.002) on univariate analysis between the groups. Only the basal respiratory minimum was significantly associated with a WPM-GERD positive result on multivariate analysis (OR:0.95 (0.90, 1.00)).

Conclusions There is a significant increased yield for GERD positive diagnoses with WPM after a negative impedance study which may be related to the presence of intermittent reflux in these patients. Predictability is difficult to ascertain from HRM or 24-hour pH impedance variables. The increased yield suggests a longer period of assessment for acid reflux rather than for different refluxate components may be
beneficial: a more formal study to assess the difference in GERD detection between WPM and impedance may be useful.

Gastroduodenal

INTRODUCTION

Cytosponge is a pill on a string device that collects cells from the upper gastro-intestinal tract and is tested for intestinal metaplasia (IM) with the immunocytochemical TFF3 marker. Gastric IM (GIM) and atrophy (GA) are precursors to gastric adenocarcinoma and require endoscopic surveillance. Non-invasive methods to detect gastric precancerous conditions are currently lacking. We aimed to evaluate the ability of Cytosponge-TFF3 to detect GIM/GA in the stomach.

METHODS

We analysed data from 292 individuals who received a Cytosponge-TFF3 test and a subsequent endoscopy with gastric biopsies as part of the BEST3 trial (Fitzgerald et al. Lancet 2020). Patients with endoscopic or histological evidence of Barrett’s oesophagus (BO), IM at the gastro-oesophageal junction or with biopsies exclusively from fundic-type polyps were excluded. Endoscopic biopsies were assessed for the presence of atrophy or IM. The presence of GIM/GA was compared in TFF3 positive (TFF3+) and TFF3 negative (TFF3-) patients using Fisher’s exact test. P-values <0.05 were considered significant.

RESULTS

20% of participants (n=57) met the study inclusion criteria. Of these, 44 were TFF3+ and 13 were TFF3-. The two groups did not differ in terms of age, sex and race (Table 1). In the TFF3+ and TFF3- groups, 84% and 77%, respectively, received proximal stomach biopsies, while the remaining patients had distal gastric biopsies only. In the TFF3+ group, 15 patients were diagnosed with GA and/or GIM, of which 4 had isolated cardia IM. One TFF3+ patient had early gastric adenocarcinoma and received curative endoscopic resection. None of the patients in the TFF3- group was diagnosed with GA/GIM. TFF3 positivity was significantly associated with the presence of GA/GIM in gastric biopsies (p=0.013).

CONCLUSIONS

Our data suggest that the Cytosponge can detect IM in the stomach. Patients with positive Cytosponge but no BO at endoscopy should receive vigilant inspection of the stomach and mapping biopsies to exclude premalignant lesions. The false positive rate in the TFF3+ group is likely related to the lack of Sydney protocol biopsies in this patient cohort. Prospective studies in high-risk populations for gastric cancer could be considered to test the Cytosponge screening method for premalignant stomach lesions.

Abstract

<table>
<thead>
<tr>
<th>Age [Mean in Years]</th>
<th>TFF3+ (n=44)</th>
<th>TFF3- (n=13)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.7</td>
<td>74.1</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Sex Male:Female (%)</td>
<td>32:12</td>
<td>7:6</td>
<td>0.31</td>
</tr>
<tr>
<td>Race White:Non-White</td>
<td>42:2</td>
<td>13.0</td>
<td>1.00</td>
</tr>
<tr>
<td>Proximal gastric biopsies (%)</td>
<td>37 (84.1)</td>
<td>10 (77.0)</td>
<td>0.68</td>
</tr>
<tr>
<td>Distal gastric biopsies only (%)</td>
<td>7 (15.9)</td>
<td>3 (23.1)</td>
<td>0.68</td>
</tr>
<tr>
<td>Normal findings (%)</td>
<td>29 (65.9)</td>
<td>13 (100)</td>
<td>0.013*</td>
</tr>
<tr>
<td>Gastric atrophy (%)</td>
<td>5 (11.4)</td>
<td>0 (0)</td>
<td>0.58</td>
</tr>
<tr>
<td>GIM (%)</td>
<td>14 (31.8)</td>
<td>0 (0)</td>
<td>0.025*</td>
</tr>
<tr>
<td>Cardia IM (%)</td>
<td>5 (11.4)</td>
<td>0 (0)</td>
<td>0.58</td>
</tr>
</tbody>
</table>

1Judith Honing*, 2E Dieninyte, 3MO Donovan, 4LAA Brosens, 5RC Fitzgerald, 1BLAM Weusten, 2M Di Pietro. 1Department of Gastroenterology and Hepatology, University of Utrecht, University Medical Center Utrecht, Utrecht, Netherlands; 2Department of Pathology, University of Cambridge, Addenbrooke’s University Hospital, Cambridge, UK; 3Department of Pathology, University of Utrecht, University Medical Center Utrecht, The Netherlands; 4Department of Gastroenterology, University of Cambridge, Addenbrooke’s Hospital, UK; 5Department of Gastroenterology, University of Cambridge, Addenbrooke’s University Hospital, UK

Introduction

Endoscopic recognition of GIM and GA is challenging and little is known regarding adherence to surveillance guidelines in Western centers, particularly those with low incidence of gastric adenocarcinoma. The aim of this study was to evaluate endoscopic recognition and adequacy of surveillance for GIM and GA.

METHODS

We retrospectively analyzed patients diagnosed with GIM or GA in two academic centers in The Netherlands and UK between 2012 till 2019. Cases with GIM/GA diagnosis at index endoscopy were retrieved through systematic search of pathology databases using ‘gastric’ and ‘intestinal metaplasia’ or ‘atrophy’ keywords. Endoscopy reports were analyzed to ascertain endoscopic diagnoses. Adequacy of surveillance was assessed based on ESGE guidelines published in 2012 at the index endoscopy. Criteria include: GA/GIM of the proximal stomach, any location of GA/GIM with a positive family history for gastric cancer or persistent Helicobacter pylori infection. Surveillance was also adequate if patients were discharged if pan-gastric sampling showed only GA/GIM of the distal stomach without risk factors or when age was above 75 years.

RESULTS

We included 318 patients with a median follow-up of 53 months. Patient characteristics are shown in table 1. Endoscopic recognition rates were 61.1% for GA and 17.4% for GIM. Surveillance was adequately carried out in 139 of 318 patients (43.7%). During follow-up two patients (0.6%) developed gastric cancer after the detection of GIM, which gives an incidence of 0.14 per 100 patient years.

CONCLUSIONS

Adequate surveillance of GIM and GA according to current guidelines was under 50% in two academic centers