with 8 incidents relating to ongoing NGT position testing. 2 NGTs moved without a change in nostril measurement; both identified via X-ray, not pH testing. 1 tube was in the lung and caused low harm. The other was in the oesophagus caused no harm. There were another 2 recorded incidents of missed medications and/or feed due to failed ongoing pH tests.

Conclusions These results highlight that NGTs can spontaneously displace and pH testing does not always identify these. It also indicates that failed pH test results can and do lead to delays in feeding and medications. Incident reporting likely captures only a fraction of these adverse outcomes and further primary observational research is required for more accurate representation.

REFERENCES

Colon and anorectum

PTH-90 PREVALENCE OF CLOSTRIDIODES DIFFICILE INFECTION IN CENTRAL INDIA: A PROSPECTIVE OBSERVATIONAL COHORT STUDY

1Tanya Monaghan*, 2Rima Biswas, 3Ashish Satav, 4Rajpal Singh Kashyap, 5NIHR Nottingham BRC, University of Nottingham, Nottingham, UK; 6Central India Institute of Medical Sciences, Nagpur, India; 7Mahatma Gandhi Tribal Hospital, Karkamang Utawal, Tahsili Dharni, District Amaravati, India; 8Sherwood Forest Hospitals NHS Trust, Sutton in Ashfield, UK; 9Leeds Teaching Hospitals NHS Trust and University of Leeds, UK

Abstract

Introduction The true burden of Clostridiodes difficile infection (CDI) in India remains poorly understood. Prolonged, unregulated antibiotic use and inappropriate prescribing suggest that CDI could be widespread in India. Our aim was to establish and compare baselines rates of CDI in both in- and outpatient settings in Nagpur district city and rural Melghat, Central India.

Methods We recruited adult participants aged ≥18 years of age who could provide written or thumb-print informed consent. A diagnosis of diarrhoea was defined as 3 or more loose stools in a 24-hour period. Immunosuppression was defined as those on prednisolone (>5mg/day), immunomodulators or biologics. Baseline characteristics were also collected and included: demographics, symptomatology, antibiotic exposure, duration of diarrhoea, hospitalisation status at recruitment, and duration, BMI, animal exposure, housing conditions, toilet access, and seasonality. All diarrhoeal samples were tested for CDI using the C. DIFF QUIK CHEK COMPLETE-enzyme immunoassay in accordance with the manufacturers’ instructions.

Results C. difficile testing was performed on 1223 patients with acute diarrhoea. A total of 36 patients (2.9%) tested positive for both GDH antigen and toxin expression. A higher% of urban inpatient diarrheal samples tested positive for toxigenic C. difficile (26 cases; 8%) compared to that seen for urban outpatients (9 cases; 3%) and the rural diarrheal group (1 outpatient case). Of those testing positive for toxigenic C. difficile, 63.9% were immunosuppressed and almost all (94.4%) were on antibiotics at the time of recruitment. The majority of the toxigenic CDI cases were detected during the monsoon season, lived in very good or good housing conditions, had access to good toilet facilities and reported no co-habitation with animals. Non-toxigenic C. difficile was detected in 6.2%, 4.8%, and 0.5% in the urban inpatient, urban outpatient, and rural populations tested, respectively.

Conclusions Toxigenic C. difficile is an important but neglected aetiologic cause of infective diarrhoea in Central India. The higher prevalence within the urban inpatient setting likely reflects greater exposure to antibiotics and hospitalisation. Our findings underscore the need to enhance awareness of and testing of patients with diarrhoea in India, particularly in high-risk individuals with recent or ongoing antibiotic exposure or hospitalisation.