Abstracts

OWE-1 INVESTIGATION OF THE METABOLOME AND MYCOBIOME IN PARKINSON’S DISEASE

1Gerum Gashaw Gebebehua, 1Luke Flain, 1Rachael Slater, 3Alessandra Fross, 4Chris Probert, 5Umer Ijaz, 6Eduardo De Pablo-Fernandez, 1Tom Warner, 1University Of Liverpool, Liverpool, UK; 2UCI: Queen Square Institute of Neurology, London, UK; 3University of Glasgow, Glasgow, UK

10.1136/gutjnl-2021-BSG.32

Introduction The brain-gut axis is implicated in the pathogenesis of Parkinson’s disease (PD). The ‘hibernating spore’ hypothesis proposes that the aetiological agent for PD is a fungal agent or its metabolite – possibly originating from a dysbiosis of the gut mycobiome. We evaluate the faecal metabolome and mycobiome in PD by assessing volatile organic compounds (VOCs) and highly-conserved fungal rRNA genes, respectively.

Methods VOCs were extracted from faecal samples from 35 PD patients and two groups of controls (n=35 and n=15) using solid phase micro-extraction and gas chromatography and mass spectrometry. DNA was extracted from a subset of 24 PD and 20 control samples: 18S rRNA gene amplicons were prepared and sequenced using an Illumina MiSeq platform. Metabolomics and mycobiome statistical analysis were carried out using Metaboanalyst and R respectively. The R package mixOmics was used for integrated omics analysis in this subset.

Results After correction for multiple comparisons, 6 VOCs were associated with PD and 12 with the primary control group (FDR < 0.025). 1,3-dinitro-benzene, 1,3-terpine, β-terpine, α-pinene, O-Cymene and D-limonene were more abundant in PD patients; short chain fatty acids were less abundant. The PD mycobiome had a higher alpha-diversity; patients with worse PD-related constipation had a significantly lower mycobiome richness (P ≤ 0.05). Beta-diversity measures found a significant difference between the mycobiomes of PD and controls. Uncultured Tremellales, Hanseniaspora, Kazachstania and Penicillium genera were more abundant in PD whereas Saccharomyces genera were less abundant (FDR < 0.0007). MixOmics analysis showed that VOCs and fungi were able to separate PD and control groups—there were correlations between VOCs and fungi in both PD and control groups (r = 0.79) (Figure 1). MixOmics found Torulopsis delbrueckii was associated with PD and two VOCs - α-pinene and β-pinene.

Conclusion PD patients had a distinct metabolome and mycobiome compared to healthy controls. There are interrelated changes of metabolome and mycobiome, suggesting a role for fungal dysbiosis and subsequent metabolome changes in the pathogenesis of PD.

Gastroenterology service

OFR-1 YOUNG PERSONS AND HEALTH CARE PROFESSIONALS EXPERIENCE OF VIRTUAL GASTROENTEROLOGY CONSULTATIONS – A MULTICENTRE SURVEY

1Rhona Hubbard*, 2Naila Areeb, 3Alenka Brooks, 4Sara El-Kouli, 4Fevroni Kiparissi, 5Elia Mozdziak, 6Philip Smith, 7Natalia Zarate-Lopez, 8Vikki Garrick, 1Priya Narula.

1Rhona Hubbard*, 2Naila Areeb, 3Alenka Brooks, 4Sara El-Kouli, 4Fevroni Kiparissi, 5Elia Mozdziak, 6Philip Smith, 7Natalia Zarate-Lopez, 8Vikki Garrick, 1Priya Narula. 1Sheffield Children’s Hospital NHS Foundation Trust, Sheffield, UK; 2Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom; 3Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 4University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK; 5Royal Liverpool University Hospital, Liverpool, UK; 6University College London Hospitals, London, UK; 7University Children’s Hospital, Glasgow, UK

10.1136/gutjnl-2021-BSG.33

Introduction During COVID many clinic consultations moved to a virtual platform. Young people (YP) require additional considerations in this setting. The aim of this study was to explore the experiences of YP and Healthcare Professionals (HCP) to establish whether developmentally appropriate care can be delivered effectively via virtual clinics (VC).