diagnostics in those with metastatic cancer who are elderly, comorbid or of poor performance status and multidisciplinary discussion including palliative care input may help such decision making.

Results

ATU-6 RESULTS OF RAPID HEPATITIS C TREATMENT SCALE-UP FOR PEOPLE WHO INJECT DRUGS IN TAYSIDE, SCOTLAND

Christopher Byrne*, John F Dillon. Molecular and Clinical Medicine, University of Dundee School of Medicine, Dundee, UK; Dept of Gastroenterology, Ninewells Hospital and Medical School, Dundee, UK

10.1136/gutjnl-2021-BSG.47

In 2017, NHS Tayside rapidly scaled-up treatment among People Who Inject Drugs (PWID) for Hepatitis C (HCV) through novel care pathways. This was to drive the region towards HCV elimination by initiating treatment for 590 PWID and obtaining 540 Sustained Virologic Responses (SVR), over three years. In 2020, Tayside declared elimination of HCV. This study analyses: treatment outcomes for PWID treated from 2017-20 and the proportionate efficiency of treatment pathways.

Demographic and clinical parameters were collected for PWID treated for HCV using Direct Acting Antivirals (DAA) from January 2017-April 2020. Follow-up was censored December 2020. Anonymised data was stored. Descriptive statistics were performed using IBM SPSS 25. SVR was calculated as a proportion of treatments.

HCV treatment was initiated 713 times among 662 PWID. Patients were mostly male (74.2%), and typically resided in deprived areas (80.4% Scottish Index Multiple Deprivation 1 or 2). HCV genotype 3 was most common (56.5%) followed by 1 (39.3%). Liver cirrhosis was observed in a minority (9.1%), and most reported receipt of Opiate Substitution Therapy (~10%), and testing dataset (~40%) with no overlap was split, as shown in Figure 1, into a training (~50%), validation (~10%), and testing (~40%) sets. The final dataset consisted of 371 histologically confirmed polyps (235 adenomas, 77 sessile serrated lesions, 58 hyperplastic, 1 traditional serrated adenoma) from 199 patients with a total of 31,110 video frames annotated. Data was split, as shown in Figure 1, into a training (~50%), validation (~10%), and testing dataset (~40%) with no overlap of polyps or patients.

On a per-frame analysis, the accuracy of the CNN optical characterisation achieved a level of 91% with a sensitivity of 91% to colorectal polyp histopathology. Inter-observer variability amongst endoscopists has limited its application in clinical practice. Artificial intelligence may lead to a new generation of clinical support tools capable of characterising polyps. Research in this field has often relied upon retrospective datasets, which are subject to sample selection bias, and consist of a limited number of images of each polyp.

Our aim was to develop a convolutional neural network (CNN) to characterise colorectal polyps as adenomatous or non-adenomatous using data collected prospectively.

Methods Video data was collected prospectively from colonoscopy procedures at a single centre using Olympus 260 and 290 series scopes. Histopathological classification, location and morphology was recorded for each polyp.

Video sequences of polyps in Narrow Band Imaging (NBI) and NBI-Near Focus (NBI-NF) were extracted. Both imaging modalities were used to increase the generalisability of the CNN. Frames with poor visualisation of the polyp surface texture due to mucus, stool, haletion or motion artifact were excluded. The ground truth for each frame was the polyp annotated with a bounding box and labelled with the histopathology.

A ResNet-101 CNN pre-trained on ImageNet was developed to classify the visual appearance of colorectal polyps as adenomatous or non-adenomatous.

Results The final dataset consisted of 371 histologically confirmed polyps (235 adenomas, 77 sessile serrated lesions, 58 hyperplastic, 1 traditional serrated adenoma) from 199 patients with a total of 31,110 video frames annotated. Data was split, as shown in Figure 1, into a training (~50%), validation (~10%), and testing dataset (~40%) with no overlap of polyps or patients.

On a per-frame analysis, the accuracy of the CNN optical characterisation achieved a level of 91% with a sensitivity of 91% to colorectal polyp histopathology. Inter-observer variability amongst endoscopists has limited its application in clinical practice. Artificial intelligence may lead to a new generation of clinical support tools capable of characterising polyps. Research in this field has often relied upon retrospective datasets, which are subject to sample selection bias, and consist of a limited number of images of each polyp.

Poster abstracts were highly commended.