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cancer, which is associated with high levels of T-cell infiltration 
and PD-L1 expression.35 EBV tumours tend to be more indolent, 
detected at earlier stages, and constitute the smallest subtype of 
gastric cancer in the TCGA (9%), with an even lower incidence 
in Asian cohorts (8%).36 Another interesting finding in our study 
was the higher levels of mast cells detected in the APBhigh STAD 
TCGA cohort samples. Mast cells are tissue-resident innate 
immune cells that have been associated with both activation and 
downregulation of adaptive and innate immune responses,37 
and whose activity can be mediated by epigenetic regulators.38 
Mast cells ameliorate effector T-cell function by inhibiting 
regulatory T cells through the OX40 axis.39 Higher mast cells 
in APBhigh tumours may reflect a compensatory upregulation 
of innate immunity due to the lower levels of T cells (adaptive 
immunity).40

For this study, we established an in vivo model to study the 
dynamic temporal interactions between alternate promoter use 
and the human immune system. While generating the model, 
we considered several factors—first, the model required a func-
tional immune system, thereby prohibiting the use of conven-
tional immunodeficient mice. Second, as the model had to 
allow testing of tumours with diverse molecular phenotypes; 
traditional syngeneic murine models where tumours are derived 
from the same genetic background as the host mouse were ruled 
out. The humanised mouse model bridges a significant gap from 
traditional human patient-derived xenograft models which 
are grown in immunodeficient mice, or in vitro cell-line/T-cell 
co-culture models for testing of tumour-immune interactions.41 
Humanised-mouse models have been used to study HCC, lung 
cancer, sarcoma and breast cancer.41 42 Our study is the first to 

Figure 5  Pan-cancer APB association with immune correlates. (A) Association of APB groups in breast (BRCA), colorectal, head and neck (HNSC), 
kidney, squamous lung (LUSC) and melanoma (SKCM) with markers of T-cell cytolytic activity (CD8A, GZMA and PRF1). The APBhigh group is denoted 
in red, APBint in yellow and APBlow in blue. The APBhigh group shows lower expression of these three genes compared with APBint, which in turn shows 
a lower expression to the APBlow group (Wilcoxon test; ***p<0.001, **p<0.01, *p<0.05; n.s.). (B) Volcano plot of�~20 000 genes in the PanCanAtlas 
correlated with APBhigh and APBlow for six tumour types (BRCA, colorectal, HNSC, kidney, LUSC and SKCM). The x-axis is the log2FC of gene expression 
(RSEM) between APBhigh and APBlow. The y-axis is the �log10 adjusted p value results (Bonferroni correction). Genes that are at least�>1.5× fold change 
and adjusted p<0.01 are coloured, while the rest are grey. Immune genes that are overexpressed APBhigh are dark red, while non-immune genes are 
pale red. Similarly, APBlow overexpressed immune genes are dark blue, while non-immune genes are pale blue. Nine selected immune checkpoints 
(PD1, PD-L1, PD-L2, LAG3, CTLA4, TIM3, ICOS, TIGIT and BTLA) are labelled. As a general trend, immune checkpoints appear to be overexpressed in 
APBlow tumours. APB, alternate promoter use burden; HNSC, head and neck squamous cell; log2FC, log2 fold change; LUSC, lung squamous; n.s., not 
signi�cant; SKCM, melanoma.
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analyse STADs using humanised mice and employ experimental 
designs mirroring preceding studies, comparing tumour growth 
kinetics between humanised-mice and immune deficient mice. 
APBlow tumours appeared to grow later and slower in human-
ised mice compared with immune-deficient mice and to APBhigh 
tumours. Similar findings were seen in triple negative breast 
cancers, where tumours grew faster in immune-deficient mice 
compared with humanised mice.42 Increased presence of cyto-
toxic T cells within the tumours limiting growth in humanised 
mice was demonstrated in an HCC study, and treatment with 
pembrolizumab demonstrated a further increase of TILs.41 
Notably, harvesting and analysing the tumours at the end of 
our experiment to evaluate the tumour immune microenvi-
ronment demonstrated the lack of TILs in APBhigh tumours, a 
finding consistent with the other experiments in our study. The 
humanised-mouse model developed in this study is an ideal plat-
form to test therapeutic strategies such as these, which target 
the tumour−immune system interface. However, one of the 
limitations is the treatment of the model with immunotherapy 
and epigenetic agents will require rigorous optimisation and 
controlling as the platform has not been used in gastric cancer 
models previously. Other limitations of the mouse-model exper-
iment include the subcutaneous flank injection of the tumours. 
Intragastric transplantation of tumours has been described in 
immune-deficient patient-derived organoid models and could 
potentially be incorporated in future humanised-mouse exper-
iments with gastric cancer.43 44

Prognostic biomarkers guide on patient outcomes or survival 
regardless of therapy, while predictive biomarkers provide infor-
mation on the effectiveness of a specified therapy.45 Currently, 
the most developed predictive biomarkers for ICI are PD-L1 
expression measured by immunohistochemistry, MSI and 
TMB.46 47 These biomarkers are positive predictive biomarkers 
that identify tumours that are likely to respond to ICI. However, 
controversies surrounding these biomarkers have been raised 
and ICI responses in biomarker-negative populations have been 
observed.48 These observations highlight the complementary role 
of negative predictive biomarkers for ICIs that identify tumours 
resistant to therapy, similar to RAS mutations in colorectal cancer 
that predict resistance to anti-EGFR therapies.49 By analysing the 
predictive value of APB in chemotherapy and targeted therapy 
cohorts as well,50 51 we confirmed that within the limitations of 
the therapies tested, the predictive nature of APB may be specific 
to ICI treatment. Our findings may guide selection of patients 
with gastric cancer for immunotherapy treatment by categorising 
patients into three groups: first, the ‘likely responders’, which 
consist of MSI-H, EBV and PD-L1 CPS ≥10 subgroups. Second, 
the ‘unlikely responders’, consisting of APBhigh patients, with 
the remaining patients falling to the third category of ‘possible 
responders’. The remaining third group of patients tends to 
demonstrate moderate benefit from immunotherapy but with 
earlier resistance and modest PFS.

Sensitivity to immune checkpoint inhibition is driven through 
various factors including neoantigen formation, tumour muta-
tional burden and PD-L1 expression.47 Our cohort of GI squa-
mous cell cancers consisted of oesophageal and anal carcinoma, 
while our APB algorithm was derived from adenocarcinoma 
samples of gastric cancer origin. The TCGA comparison of squa-
mous and adenocarcinoma histological subtypes of the oesoph-
agus has also identified significant genomic and epigenetic 
differences.52 Squamous oesophageal cancer has also been shown 
to have a significantly higher proportion of responses to immune 
checkpoint inhibition compared with oesophageal adenocarci-
noma, driven by higher PD-L1 expression.52 53 A similar high 

response rate of squamous anal carcinoma to pembrolizumab 
has also been demonstrated.54 These results were reflected in 
our cohort as well, with 72% of patients having disease control 
(stable disease or partial response) as best response to ICI in the 
squamous cohort, compared with 41% in the adenocarcinoma 
cohort. Thus, as our APB algorithm appears to best function as 
a negative predictive biomarker, identifying poor responders to 
ICI, the high sensitivity of squamous cancers to ICI and small 
numbers may be reasons for the NanoString panel failing to 
differentiate responders and non-responders in the squamous 
GI cancer cohort. The identification of a subgroup of tumours 
exhibiting primary resistance to immunotherapy that are associ-
ated with alternate promoters raises intriguing possibilities for 
biomarker-selected combination therapeutic strategies. Drugs 
targeting epigenetic pathways such as DNA methyltransferase 
and histone deacetylase have been shown to abrogate immune 
evasion through targeting mechanisms such as antigen processing 
and presentation, expression of chemokines and immune check-
points, and host immune priming.55 Several trials are currently 
ongoing, looking at the role of combining epigenetic agents with 
ICI, aiming to convert immunologically ‘cold’ to ‘hot’ tumours 
that may be more sensitive to immunotherapy.55–57

In conclusion, our study describes alternate promoter usage 
as a conserved pan-cancer marker that is associated with an 
immune-depleted tumour microenvironment, and quantification 
of APB may serve as a novel negative predictive biomarker of 
immune checkpoint inhibition.
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