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Figure 7  β-N-methylamino-L-alanine (BMAA) induces dopaminergic neurodegeneration in vivo. (A) Representative immunofluorescence 
photomicrographs of the localisation of tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT)-positive neurons in the dorsal motor nucleus 
of the vagus (DMV) from untreated (Unt) and BMAA-treated mice. (B) Quantification of the number of TH-positive neurons per mm2 in the DMV 
region (n values for all conditions=4, Unt vs BMAA, ***p=0.004). (C) Quantification of the number of ChAT-positive neurons per mm2 in the DMV 
region (n values for all conditions=4, Unt vs BMAA, p=0.41). (D) Representative immunoblot for TH, synaptophysin and PSD95 proteins. The blots 
were re-probed for βIII-tubulin to confirm equal protein loading. (E) Densitometric analysis of TH, (F) synaptophysin and (G) PSD95. Data were 
normalised with βIII-tubulin and expressed relatively to Unt mice (E–F, n values for Unt=10 and BMAA=8, G, Unt=9 and BMAA=7, Unt vs BMAA; E, 
**p=0.006, F, p=0.8286 and G, p=0.2799). (H) Representative photomicrographs of brain coronal sections immunostained with TH in striatum (STR) 
and substantia nigra (SN) from Unt and BMAA-treated mice. (I) Optical density analysis of the TH-positive fibres in the STR normalised to Unt group 
(n values for Unt=6 and BMAA=5, Unt vs BMAA, **p=0.0016). (J) Total number of nigral TH-positive neurons in SN assessed by stereological analysis 
(n values for Unt=6 and BMAA=5, Unt vs BMAA, *p=0.0135). (K) Dopamine levels were assessed in STR homogenates from Unt and BMAA-treated 
mice by Dopamine ELISA kit. Values are pg/mL (n values for Unt=6 and BMAA=7, Unt vs BMAA, *p=0.035). Scale bars are 50 µm (A) and 100 µm (H) 
(enlarged inner square) and 200 µm (A) and 1 mm (H). Data represents mean+SEM. Statistical analysis: Unpaired Student’s t-test was performed in 
B–C, E, G, I–J and Mann-Whitney test in F and K.
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depletion of SFB activated CD11b+ gut resident cells that released 
TNF-α and IL-1β, and may have also activated non-resident proin-
flammatory Th17 cells driving the production of IL-17 with effects 
in the periphery.14 Interestingly, circulating Th17 cells are increased 
in early-stage PD.62 Under inflammatory conditions, the intestinal 
epithelium is exposed to multiple cytokines that may synergisti-
cally impair intestinal barrier through reduction in occludin and 
ZO1 levels as well as cytoskeletal rearrangement.46 Additionally, we 
observed a decrease in CD4+ lymphocytes and an increase in the 
levels of IFNγ and IL-6 in the blood of BMAA-treated mice, resem-
bling what has been described in patients with PD.48 63 The decline of 
CD4+ T cells and the increase of pro-inflammatory cytokines in PD 
patients’ blood reported in previous studies might suggest impair-
ment of peripheral immunity with propensity to systemic inflam-
mation.64 The increased mesencephalic IgG infiltration detected in 
our study suggests that BMAA promoted BBB permeability in the 
SN although no detectable effects were observed in the striatum or 
the cortex. BMAA has been shown to cross the BBB and has been 
detected in the brain of patients with ALS/PDC.20 Herein, we show 
that in vivo BMAA treatment impaired the OCR and calcium uptake 
by mesencephalic mitochondria but not in cortical mitochondria, 
despite the fact that direct acute in vitro treatment of isolated mesen-
cephalic or cortical mitochondria with BMAA induced a decrease in 
OCR.21 BMAA treatment led to mitochondria dysfunction and frag-
mentation in primary mesencephalic neurons, which due to mito-
phagy impairment were not degraded and consequently exposed 
cardiolipin, a DAMP able to activate neuronal innate immunity.52 
Interestingly, when the experiments were conducted in Rho0 cells 
that lack functional mitochondria, BMAA had no effect on the 

membrane potential or on the fragmentation of the mitochondrial 
net. We also observed that BMAA treatment activated the NLRP3 
inflammasome accompanied by the release of IL-1β in enriched 
mesencephalic neuronal cultures. Although in the in vivo context we 
cannot affirm that NLRP3 activation and IL-1β release are restricted 
to neurons, the activation of the microglia in SN and the more 
intense co-localisation of Trem2-positive monocytes strongly indi-
cate the involvement of systemic immunity.54 Since neurons express 
TLRs and major histocompatibility complex class I proteins and are 
able to release pro-inflammatory mediators,65 we propose that in 
BMAA-treated mice, neurons are the ones to be initially affected and 
only later signal microglia.

One well described consequence of innate immunity activation 
is the production of antimicrobial peptides.66 Recent data suggest 
that, in the enteric nervous system (ENS), aSyn plays a role in innate 
immune defences of the GI tract. Indeed, increased expression 
of aSyn in the enteric neurites of the upper GI tract of paediatric 
patients positively correlated with the degree of acute and chronic 
inflammation induced during norovirus infection in the intestinal 
wall.67 It was also demonstrated that aSyn exhibits antibacterial 
activity against Escherichia coli and Staphylococcus aureus, which 
suggests that, in addition to a role in neurotransmitter release, aSyn 
may also function as a natural bacteriostatic protein.68 In BMAA-
treated mice, we observed an evident increase in aSyn aggregation in 
the ileum and a caudo-rostral progression through the DMV nucleus 
into the SN. Our findings are in line with studies conducted in germ-
free mice colonised with PD gut microbiota or with curli-producing 
E. coli, which showed increased aggregation of aSyn in the gut and in 
the brain,9 69 and that suggest an aSyn-dependent mechanism in the 

Figure 8  β-N-methylamino-L-alanine (BMAA) in vivo administration induces motor behavioural changes. (A) Balance and motor coordination 
performance was assessed with the beam walking test (n values for untreated (Unt)=9 and BMAA=11, Unt vs BMAA, ****p<0.0001). (B) Hindlimb 
clasping reflex was monitored, as a quick phenotypic neurological scoring system for evaluating disease progression (n values for Unt=10 and 
BMAA=15, Unt vs BMAA, ***p=0.0008). (C) Inverted grip test was used to evaluate muscular strength of limb muscles (n values for all conditions=8, 
Unt vs BMAA, *p=0.0132). (D–E) Cognitive and memory ability was assessed using a T-maze. (D) Percentage of alternation between arms and (E) 
latency to respond (s) was assessed (n values for all conditions=8, Unt vs BMAA, D, p=0.2165; E, p=0.192). (F–I) Locomotor activity was evaluated 
in an open field arena. (F) Distance travelled (cm), (G) % time spent at the centre of the arena, (H) mean velocity (cm.s−1) and (I) % resting time (n 
values for all conditions=14, Unt vs BMAA, F, *p=0.0384; G, *p=0.0165; H, *p=0.0383 and I, *p=0.0495). Data represents mean+SEM. Statistical 
analysis: Unpaired Student’s t-test was performed in A, C and E–I, and Mann-Whitney test in B and D.
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aetiology of some PD ‘gut-first’ cases.70 71 The proposal that a bacte-
rial toxin such as BMAA can stimulate the expression and spread of 
aSyn through enteroendocrine cells that synapse with enteric nerves 
in the GI tract3 is innovative and may reveal important new targets to 
address prodromal, peripheral synucleinopathy. Regarding the ENS, 
a very interesting study performed in patients with PD’ duodenal 
biopsies failed to demonstrate alterations in the number of submu-
cosal neurons as well as alterations in mitochondrial membrane 
potential and aSyn levels.72 Nevertheless, this data agrees with 
our study, since we did not observe an increase in duodenal aSyn 
aggregates in BMAA-treated mice (data not shown). Additionally, 
aSyn has been proposed to behave as prion-like protein spreading 
through a caudo-rostral trajectory from the gut to the brain via 
the vagus nerve.70 73–76 We also observed that aSyn accumulates 
within brain mitochondria, which may indicate a positive feedback 
mechanism further contributing to their dysfunction. Several in 
vitro studies showed that aSyn targets the mitochondria inducing 
morphological and functional alterations.77 Interestingly, rotenone, 
a complex I inhibitor that leads to mitochondrial dysfunction and 
fragmentation, also induces aSyn accumulation.78 We therefore 

propose that the PD neurodegenerative process is intimately associ-
ated to the role of mitochondria in the activation of innate immu-
nity. This work further reinforces the crucial role of mitochondria 
in the aetiology of PD, essentially because BMAA treatment did 
not increase aSyn aggregation in Rho0 cells. The observation that 
BBB permeabilisation and mitochondrial dysfunction occur in the 
SN but not in the cortex led us to hypothesise the vital impact of 
the caudo-rostral progression of aSyn pathology through the vagus 
nerve. Indeed, and despite previous observations showing increased 
permeability of cortical and STR regions to blood-borne compo-
nents,49 we observed a positive correlation between BBB permeabi-
lisation and aSyn aggregates levels in the midbrain, which indicates 
that both the blood and the vagal routes are likely involved in the 
full deleterious effect of BMAA on the mitochondria. This will in 
turn fully activate innate immune responses and neuroinflamma-
tion, which will synergistically induce dopaminergic neurodegener-
ation and impair motor function. In summary, our findings indicate 
that in genetically susceptible PD patients, the pathology may start 
in the gut when triggered by an environmental toxin such as BMAA, 
a microbial product commonly found in seafood, shellfish and 

Figure 9  Schematic diagram of ‘Gut-first’ PD. Environmental microbial toxins lead to the erosion of segmented filamentous bacteria (SFB, 
green) in the ileum, which potentiates a Th17 proinflammatory response and the loss of intestinal barrier integrity. These events in the gut allow 
the progression of the disease into the brain either through the blood or the vagus nerve. Microbial toxins target mesencephalic mitochondria 
and activate neuronal innate immunity followed by aSyn expression, microglial activation and ultimately PD. aSyn, alpha-synuclein; BMAA, β-N-
methylamino-L-alanine; IL, interleukin; PD, Parkinson’s disease; Th17, T helper 17. (This image was created at BioRender.com).
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fish. From the observed effect of BMAA on specific members of 
the mice gut microbiome namely on ‘Candidatus Arthromitus’, we 
propose that this toxin may have initially evolved as an antimicro-
bial compound, possibly to provide some competitive advantage to 
its producers in a shared ecosystem, and accidentally targeted the 
mitochondria, acknowledged relatives of an ancient endosymbiotic 
proteobacteria. In support of the gut-to-brain paradigm, we demon-
strate that gut inflammation is correlated with aSyn aggregation and 
highlight the key role of mitochondria in the downstream activation 
of neuronal innate immunity, aSyn aggregation and loss of DMV 
and SN TH-positive neurons. Although we did not determine ENS 
neuronal mitochondrial function, we share the view that the gut 
and the ENS act as a gateway through which BMAA and aSyn reach 
the DMV and the SN, target the mitochondria and gradually inflict 
damage to the most vulnerable TH-positive neurons.79 However, 
we cannot discard completely the possibility of peripheral inflam-
mation and consequent BBB disruption being involved in the access 
of BMAA to the brain parenchyma, an important question that must 
be addressed in a future study.

We theorise that chronic exposure to microbial BMAA via 
dietary sources impacts the host and may elicit phenotypic alter-
ations that might trigger PD. Our results suggest that BMAA 
possesses narrow-spectrum antibiotic activity against some 
bacterial ‘sentinels’ responsible for gut mucosal immune homeo-
stasis, the SFB. Notwithstanding the role of host genetic suscep-
tibility and of other contributors, namely those driven by gut 
dysbiosis as probable drivers of pathology progression, this work 
is important to alert health authorities to the pressing need to 
implement routine protocols to monitor the levels of this (and 
other) toxin in foods and food supplements. In conclusion, our 
work sheds additional light into a long-lasting discussion80 by 
providing the first proof-of-concept for the possible involvement 
of a microbial toxin in the aetiology of PD (figure  9), which 
stands as an important step towards development of innovative 
therapies that may successfully thwart the onset and chronic 
course of this neurodegenerative disease.
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