Dynamic changes in host immune system and gut microbiota are associated with the production of SARS-CoV-2 antibodies

Recently, we read the article by Ng et al with great interest,¹ which identified several gut microbiota harbour the

potential to improve immune response and reduce adverse events following COVID-19 vaccines, and demonstrated that gut microbiota has the potential to complement the effectiveness of vaccines. Together with several recent studies, gut microbiota plays a key role in modulating immune responses of vaccination²⁻⁴ and is related to the severity of COVID-19 patients,^{5 6} however, the comprehensive assessment of host's response, particularly the role of gut microbiota in antibodies production is limited and should be seriously considered because the vaccination of SARS-CoV-2 is the most promising approach for curbing the COVID-19 pandemic.47

Therefore, we recruited 30 young volunteers (20-23 years old), including 15 male and 15 female volunteers, and collected 143 faecal and 120 blood samples at multiple time points to monitor their responses to Sinovac vaccine from multiple perspectives (figure 1A and online supplemental figure 1). Through routine blood test, flow cytometry and ELISA, the blood immunological indices, immune cell subsets and antibodies levels were measured, respectively, while by wholegenome shotgun sequencing, the structure of gut microbiota communities was profiled. Particularly, our results were compared with a published gut microbiota dataset derived from patients with SARS-CoV-2 infection (online supplemental material 1).

Interestingly, our results showed that a majority of healthy individuals can produce SARS-CoV-2 antibodies (90%, 96.67% and 80% of the subjects produce anti-(N+S) IgA, IgG and IgM antibodies, respectively, online supplemental table 1), at the end of 2 weeks after second dose of Sinovac vaccine. Moreover, the levels of these antibodies first increased over the first 2 weeks after the first dose and reached a peak 2 weeks after the second dose during the vaccination process (figure 1B).

In addition, the alterations in cytokines, lymphocytes and indicators of physiological and biochemical systems were measured to visualise the response of immune system of host (figure 1C-E, online supplemental tables 2–4). In addition, based on the taxonomical compositions of gut microbial communities across different vaccination time points, we found that the alpha diversities of the gut microbial communities did not significantly differ (figure 1F). However, the compositions of gut microbial communities during the vaccination process exhibited significant differences (analysis of similarities, Bray-Curtis dissimilarity, p=0.015, figure 1G), these gut microbial communities could be distinctly separated depending on the time points of vaccination (figure 1H), and the taxonomical compositions of gut microbial communities undergo changed (figure 1I).

Furthermore, the comparison of the gut microbiota of healthy individuals who vaccinated with Sinovac vaccine and COVID-19 patients with different clinical diagnoses, without accounting for factors such as age, suggest that the alterations of gut microbiota during vaccination were not as substantial as those caused by SARS-CoV-2 infection (figure 1J).

Finally, our results showed that the correlations among gut microbiota, cytokines, lymphocytes and SARS-CoV-2 antibodies (figure 1K and online supplemental figures 2, 3). In particular, we found that several gut microorganisms have a significant association with SARS-CoV-2 antibodies production. For example, Prevotella copri was negatively correlated with IgG, whereas Clostridium leptum, Lactobacillus ruminis, Ruminococcus torques, etc, presented a positive correlation with antibodies production (all p<0.01, figure 1K). Moreover, a variation partitioning analysis based on the metadata of body features and the compositions of gut microbial communities was performed, which showed that the production of antibodies is mainly affected by the gut microbiome (22%) and body features (18%, online supplemental table 5, online supplemental figure 4). These results suggest that gut microbiota plays an important role in the production of SARS-CoV-2 antibodies in young healthy individuals and the dynamic changes of immune system and gut microbiota and their associations with the production of SARS-CoV-2 antibodies in elderly population remain elusive and should be further investigated.

Overall, our study systematically investigated the dynamic changes of host, including lymphocytes, cytokines, gut microbiota and antibodies, and linked these factors to the production of antibodies. Our results provide an optional perspective for evaluating the safety and effectiveness of SARS-CoV-2 vaccines and settling the treatment of COVID-19 patients, and can alleviate the public's concerns and fears about the vaccination.

Maozhen Han [©],¹ Yixuan Huang,² Hongya Gui,³ Yixuan Xiao,³ Maozhang He,³ Jiling Liu,³ Xiujing Cao,⁴ Meijuan Zheng,⁵ Min Lu,⁵ Weihua Jia,¹ Hui Li,⁶ Xiaoyan Wang,⁷ Na Zhang,¹

Shu-an Kong,² Xiaohui Liu,⁸ Yonggui Wu,⁹ Fengchang Wu,⁸ Shenghai Huang © ^{1,3}

¹School of Life Sciences, Anhui Medical University, Hefei, Anhui, China

²Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China

³Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China

⁴Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China

⁵Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China

⁶Hefei City Maternal and Child Health & Family Planning Service Center, Hefei, Anhui, China ⁷Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China ⁸State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China ⁹Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China

Correspondence to Professor Shenghai Huang; huangshh68@aliyun.comProfessor Fengchang Wu; wufengchang@vip.skleg.cnProfessor Yonggui Wu; wuyonggui@medmail.com.cn

Acknowledgements We thank Professor Yong Gao (Division of Life Sciences and Medicine, The First Affilated Hospital of USTC, University of Science and Technology of China, Hefei, China) and MD Chengcheng Jiang (Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University) for the support in experiment of pseudovirus neutralisation assay.

Contributors MHa and SH designed the study. MH, WJ and SH recruited the healthy volunteers from School of Life Sciences, Anhui Medical University. MHa, YX, MHe, HL, XW, NZ and SaK collected the blood and fecal samples. MHa, YH, HG, YX, NZ and XC analysed the data of indicators obtained from routine blood tests, lymphocytes, cytokines and metagenomic sequencing data. HL and ML conducted the measurement of the indicators obtained from routine blood tests, lymphocytes and cytokines. MHa, YW, FW and SH organised the structure of the manuscript. MH, YH, HG and YX wrote the initial draft of the manuscript. All authors read, modified and approved the final manuscript.

Funding This work was supported by Grants for the Natural Science Foundation of China (No. 81974306), Major Project of Natural Science Research of Anhui Education Department (No. KJ2019ZD23), the Fund of Excellent Talents in Colleges and Universities of Anhui Province (gxbjZD09), Scientific Research of BSKY (No: XJ201916) from Anhui Medical University, Anhui Provincial Natural Science Foundation (2208085QH231), Young Foundation of Anhui Medical University (2020xkj015), the Natural Science Foundation in Higher Education of Anhui (KJ2021A0244), the joint project of nephrology and microbiology in Anhui Medical University (No. 2020lcxk015) and Education Quality Engineering of Anhui Province (No. 2020jyxm0614).

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval The study protocols were all approved by the Biomedical Ethics Committee of Anhui Medical University (No 2021H021). Participants gave

Figure 1 The response of healthy individuals during the vaccination of two dose of SARS-CoV-2 vaccine and the interplay between host immune systems and gut microbiota that contributes to the production of SARS-CoV-2 antibodies. (A) Study design for collecting the faecal and blood samples from 30 healthy individuals to explore the dynamics changes of host immune systems, gut microbiota and the production of SARS-CoV-2 antibodies. Dynamic changes in SARS-CoV-2 antibodies, cytokines, lymphocytes and indicators obtained from routine blood tests. (B) Concentrations of IgA, IgG and IgM detected at different time points during the vaccination process. The differences between different time-points were assessed by two-way ANOVA, and two-sided exact p values are reported. (C) Concentrations of IFN-y, IL-2 and IL-4 measured at different time points during the vaccination process. (D) The levels of NK cells, B cells and CD4+T cells and the CD4+/CD8+ratio are illustrated in chronological order. (E) Dynamic changes in the counts of white cell count, neutrophils (Neu), lymphocyte (Lym), monocytes (Mon) and eosinophils (EOSs) during the vaccination process. (F) The alpha diversities, including the Shannon and Simpson indices, of the human gut microbial communities did not significantly differ among different time points during the vaccination process. (G) A significant difference in the human gut microbial compositions was found among different time points during the vaccination process according to their Bray-Curtis dissimilarity at the species level. (H) Based on the taxonomic compositions of all 143 samples at the species level, LDA can successfully separate the human gut microbial communities at different time points during the vaccination process. The density curves in the bottom and right panels show the distribution of the human gut microbial communities along the LD1 and LD2 axes, respectively. (I) Compositional differences in the gut microbiota among different time points during the vaccination process visualised with the average relative abundances at the phylum level. (J) Comparison of the taxonomic structure of the human gut microbiota among unvaccinated healthy individuals, healthy individuals at different time points during the vaccination process, and COVID-19 patients with different clinical diagnoses. (K) Correlations between the production of antibodies against SARS-CoV-2 and gut microbiota.*, p<0.05; **, p<0.01; ***, p<0.001; ANOVA, analysis of variance; LDA, linear discriminant analysis.

informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

► Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10.1136/gutjnl-2022-327561).

MH, YH, HG and YX contributed equally.

Check for updates

To cite Han M, Huang Y, Gui H, *et al. Gut* 2023;**72**:1996–1999.

Received 7 April 2022 Accepted 23 September 2022 Published Online First 7 October 2022

Gut 2023;**72**:1996–1999. doi:10.1136/ gutjnl-2022-327561

ORCID iDs

Maozhen Han http://orcid.org/0000-0002-5958-1941 Shenghai Huang http://orcid.org/0000-0002-5699-8928

REFERENCES

- Ng SC, Peng Y, Zhang L, *et al*. Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity and adverse events. *Gut* 2022;71:1106–16.
- 2 Hagan T, Cortese M, Rouphael N, *et al*. Antibioticsdriven gut microbiome perturbation alters immunity to vaccines in humans. *Cell* 2019;178:e13:1313–28.
- 3 Lau HC-H, Ng SC, Yu J. Targeting the gut microbiota in coronavirus disease 2019: hype or hope? *Gastroenterology* 2022;162:9–16.
- 4 Lynn DJ, Benson SC, Lynn MA, et al. Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nat Rev Immunol 2022;22:33–46.

- 5 Kim HS. Do an altered gut microbiota and an associated leaky gut affect COVID-19 severity? *mBio* 2021;12:e03022–20.
- 6 Segal JP, Mak JWY, Mullish BH, et al. The gut microbiome: an under-recognised contributor to the COVID-19 pandemic? *Therap Adv Gastroenterol* 2020;13:1756284820974914.
- 7 Angeli F, Spanevello A, Reboldi G, et al. SARS-CoV-2 vaccines: lights and shadows. Eur J Intern Med 2021;88:1–8.

placed on this supplemental material which has been supplied by the author(s)

Sample ID	The measure before var	ement o ccinatio	of antibodies	The measurer	nent of antibod	ies at 2 weeks /ml)	The measure after	ment of antibo	dies at 1 week	The measurer	nent of antibod	ies at 2 weeks
									laM			
	iyA	igG		19A				19G		11 52000		
	0	0	5.790462	3.115225	69.69946	21.88886	9.895591	2143.419	45.06539	11.53869	2349.821	61.44432
F02	0	0	0	8.183167	216.1954	21.79543	10.05505	1589.309	28.90224	63.45216	2044.093	28.95619
F03	0	0	0	1.513/2/	82.36792	13.26068	52.46353	1652.449	25.93505	39.4713	1566.937	21.03647
F04	0	0	0	0	218.9582	21.63666	8.065308	2182.503	35.54106	14.90807	2303.729	43.2342
F05	0	0	0	12.53009	167.8801	10.4877	162.8074	1997.462	16.58028	115.1646	2020.036	12.70673
F06	0	0	0	0	0	0	0	1532.166	19.38563	0	1534.457	29.06409
F07	0	0	0	0.258874	0	7.380233	5.798253	247.058	0.395555	0	526.5054	7.732628
F08	0	0	0	0	218.9582	23.40311	11.99626	2182.503	2.790893	50.51539	2303.729	9.685585
F09	0	0	0	8.210899	375.0903	54.45619	25.73031	2040.926	62.49094	74.54479	1819.43	46.24148
F10	0	0	20.81355	52.15849	333.5135	39.32887	123.8168	1778.19	55.82283	58.95272	1684.861	35.23587
F11	0	0	0	2.435801	0	0	11.33763	1343.621	0.07186	21.7231	1532.57	1.916918
F12	0	0	0	3.905574	292.6779	117.814	154.689	2283.513	85.75378	72.70757	2200.023	50.50345
F13	0	0	0	53.10136	0	54.45619	63.52149	1287.961	62.49094	89.15932	1381.627	46.24148
F14	0	0	5.790462	3.115225	69.69946	21.88886	9.895591	2143.419	45.06539	11.53869	2349.821	61.44432
F15	0	0	0	8.183167	216.1954	21.79543	10.05505	1589.309	28.90224	63.45216	2044.093	28.95619
M01	0	0	0	29.72366	189.1065	0	43.23586	813.9043	5.488347	169.3867	2152.718	40.14523
M02	137.2597	0	23.36707	90.22005	0	5.89836	109.6945	865.3868	21.55438	94.17873	1270.508	46.24148
M03	0	0	0	38.05006	0	0	77.3942	668.2844	0	110.6513	872.1253	0
M04	0	0	0	0	0	0	96.32793	566.1954	2.851008	0	1075.899	18.72745
M05	0	0	0	2.934969	63.9717	18.94325	33.97352	1354.605	28.31959	98.39393	1928.662	44.0943
M06	0	0	0	13.07779	0	0	45.80796	1063.567	0	28.75305	1077.247	0
M07	0	0	0	0	0	0	0	0	0	0	534.4569	0
M08	0	0	0	5.812119	0	0	21.39725	566.1954	3.913034	26.05616	1075.899	10.5164
M09	0	0	0	5.701192	0	0	46.96575	1380.212	13.72098	12.19038	1221.317	12.83621
M10	0	0	0	0	0	0	25.03009	0	0	0	0	0
M11	0	0	0	45.17707	0	0	114.2148	249.2143	0	184.4866	729.6051	0
M12	0	0	0	44.01927	0	0	104.8692	1503.055	15.68472	98.8099	1555.818	10.68904
M13	0	0	0	0	0	0	12.28744	1172.125	31.30837	4.799917	1402.179	30.36966
M14	0	0	0	0	0	0	0	1249.282	13.72098	0	1249.282	13.72098
M15	0	0	0	0	0	0	6.699529	1057.705	0	6.914448	1322.53	0
Mean	4.575323333	0	1.858718133	14.38092597	83.810468	15.1477941	46.60084307	1283.45132	21.7251829	50.72498917	1504.332623	23.72468903
Standard deviation	24.6388702	0	5.60546677	21.93383041	115.5800836	24.58475213	47.88433717	664.0600361	22.63510932	50.48868568	598.5702092	19.52003028

Supplementary Table S1 The levels of SARS-CoV-2 antibodies were measured in different time points during the SARS-CoV-2 vaccination process from the healthy volunteers using ELISA method.

Han M, et al. Gut 2022;0:1-3. doi: 10.1136/gutjnl-2022-327561

placed on this supplemental material which has been supplied by the author(s)

Supplementary Table S2 The levels of cytokines were measured in different time points during the SARS-CoV-2 vaccination process from the healthy v	volunteers using ELISA method.
--	--------------------------------

Sample ID	The measur	ement of antibo	odies before									
	va	ccination (pg/n	nl)	The measurer afte	nent of antibodi er first dose (pg/	ies at 2 weeks /ml)	The measure after	ment of antiboo second dose (p	lies at 1 week g/ml)	The measurer after	nent of antibod second dose (p	ies at 2 weeks g/ml)
	IFN-γ	IL-2	IL-4	IFN-γ	IL-2	IL-4	IFN-γ	IL-2	IL-4	IFN-γ	IL-2	IL-4
F01	0	0	5.30952381	1.563830234	0	1.845238095	2.12103855	0	7.55952381	0.16977455	1.256704981	2.595238095
F02	0.71778095	0	8.55952381	1.899606059	0	3.202380952	1.380776684	0	11.5952381	0.573108359	0	9.202380952
F03	0	0	0	0.329546159	0	6.666666667	0.923442059	0	6.380952381	0.436089659	0.233716475	0.952380952
F04	0	0	2.738095238	0.010055309	0	2.488095238	1.091081784	0	8.916666667	0	7.848659004	1.273809524
F05	0	0	0	0	0	2.05952381	0.6264038	0	9.273809524	1.007254738	0	4.130952381
F06	0	0	10.98809524	0	0	7.845238095	0.740627909	0	22.23809524	0.04807895	5.01532567	19.41666667
F07	35.36339925	0.003831418	8.988095238	41.1621525	0	12.8452381	55.59690017	0	13.27380952	55.66326781	0	7.130952381
F08	26.66961361	0	20.52380952	55.66326781	0	7.130952381	48.80945445	0	23.05952381	72.1957744	0	18.02380952
F09	28.56347588	2.95210728	1.773809524	48.91852025	1.739463602	3.80952381	50.73268094	3.27394636	16.02380952	69.2889882	13.14176245	3.130952381
F10	19.2487545	3.762452107	2.380952381	49.34411681	0.337164751	1.05952381	70.35860913	1.825670498	15.63095238	52.4438621	1.314176245	0.880952381
F11	23.62786936	0.699233716	6.880952381	48.79854925	0	3.773809524	45.97171826	2.394636015	9.095238095	56.31636444	3.963601533	9.05952381
F12	18.36213757	1.986590038	0	28.34452878	0	2.880952381	37.33770025	0.164750958	0	36.44500463	9.601532567	0
F13	26.815	0	7.952380952	19.20794882	0	1.202380952	40.16555505	0	3.488095238	30.12013815	5.095785441	1.630952381
F14	16.75682023	2.285440613	11.91666667	34.98227997	0	0	35.36339925	0	16.77380952	32.11323122	0	15.66666667
F15	19.72852226	0	0.773809524	36.99741679	0	1.130952381	63.08627129	0	0.952380952	54.83432213	0	0
M01	0.086105559	1.03256705	9.238095238	0.740627909	0	1.166666667	3.444072809	1.049808429	15.66666667	1.007254738	6.69348659	10.95238095
M02	0.177381534	16.28544061	0	1.624863284	0	0	2.037035159	2.567049808	4.666666667	0.146954309	10.89463602	1.345238095
M03	0	2.181992337	0.666666667	0.299109434	0	0	0.47414655	3.69348659	3.630952381	0	10.91762452	5.416666667
M04	1.518060434	3.739463602	3.238095238	1.731689409	2.561302682	5.916666667	2.747698438	1.727969349	32.88095238	1.243531409	7.888888889	29.52380952
M05	0	0.331417625	0	0.177381534	0	15.30952381	1.14443375	0	2.880952381	0.35237495	12.74521073	0
M06	0	0	0	0.0176598	0	1.273809524	0.512206409	0	6.130952381	0.580721637	0	0
M07	0	0.078544061	0	0.847261184	0	0	0.847261184	0	0	0	0	0
M08	47.94050518	42.44636015	0	34.20473375	21.13601533	0	33.61222628	14.56130268	0	53.00380941	32.17624521	1.202380952
M09	0	1.388888889	0	0.41325695	0	10.30952381	0	0	7.095238095	0	1.572796935	3.166666667
M10	0	0	43.77380952	0	0	29.66666667	0.154560938	0	57.80952381	0	2.647509579	2.702380952
M11	0	1.090038314	0	0.367594737	0	5.238095238	0.192595859	0	6.916666667	0	0	0.130952381
M12	0.53504375	0	2.845238095	1.281651238	0	4.773809524	0.771092184	0.130268199	3.666666667	0.314327559	0.584291188	5.416666667
M13	1.601975	0	6.738095238	0.314327559	0.584291188	5.416666667	2.166864638	0	0	0.0176598	0	10.70238095
M14	0.672090238	0	3.845238095	1.960680909	0	11.80952381	2.51834	0	31.70238095	0	14.07279693	22.02380952
M15	5.777552109	1.03256705	9.238095238	2.533627238	0	1.166666667	1.914874059	1.049808429	15.66666667	0.83964375	6.69348659	10.95238095
Mean	9.138736247	2.709897829	5.612301587	13.79120946	0.878607918	4.999603175	16.89476893	1.081289911	11.76587302	17.30538456	5.145274585	6.554365079
Standard deviation	13.24771576	7.965012354	8.592282657	19.37038178	3.801813905	6.099503626	23.06971263	2.721566662	12.16137412	25.25703494	6.825979293	7.541293906

Han M, et al. Gut 2022;0:1-3. doi: 10.1136/gutjnl-2022-327561

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance

Supplemental material

placed on this supplemental material which has been supplied by the author(s)

Supplementary Table S3 The indicators of lymphocytes were measured in different time points during the SARS-CoV-2 vaccination process from the healthy volunteers using flow cytometry.

Sample		The r	neasurem	ent of lymph	hocytes before	vaccinatio	n			The mea	asurement	of lymphoc	cytes at 2 wee	ks after f	irst dose			The meas	urement of	flymphocy	tes at 1 week	k after seo	cond dose			The me	asurement	of lymphod	ytes at 2 wee	eks after s	second dos	se
ID	CD3	CD3CD8	CD3CD4	CD3CD4 CD8	CD16CD56	CD19	4/8Ratio	Lym	CD3	CD3CD8	CD3CD4	CD3CD4C D8	CD16CD56	CD19	4/8Ratio	Lym	CD3	CD3CD8	CD3CD4	CD3CD4 CD8	CD16CD56	CD19	4/8Ratio	Lym	CD3	CD3CD8	CD3CD4	CD3CD4 CD8	CD16CD56	CD19	4/8Ratio	Lym
F01	85.03	38.25	44.13	1.16	4.68	9.31	1.15	4403	82.56	37.01	43.04	1.2	6.95	9.6	1.16	6576	83.91	35.91	44.88	0.67	5.48	9.06	1.25	5825	85.45	35.42	47.7	0.95	3.89	8.97	1.35	5706
F02	58.91	16.27	39.34	0.62	26.68	12.97	2.42	5668	65.82	16.51	45.66	0.28	17.73	15.28	2.77	5725	66.3	15.27	47.41	0.36	17.42	15.12	3.11	6066	64.96	15.98	45.57	0.29	16.04	16.5	2.85	7480
F03	75.53	34.47	37.36	2.5	14.01	9.8	1.08	5530	77.58	28.36	43.76	0.66	8.24	13.09	1.54	6806	75.8	31.9	37.55	1.27	10.66	12.9	1.18	4335	71.45	31.82	34.78	1.88	16.69	10.05	1.09	4638
F04	71.22	28.93	41.51	1.69	17.79	9.9	1.43	3958	68.76	30.7	36.86	1.7	22	8.48	1.2	4069	71.68	25.45	44.92	1.59	16.92	9.72	1.76	3210	71.62	25.94	44.56	1.4	15.21	11.08	1.72	4845
F05	71.75	23.99	38.45	0.74	17.39	10.18	1.6	3243	75	25.8	40.55	0.52	14.95	9.41	1.57	6600	76.4	24.26	45.54	0.95	12.09	10.76	1.88	3911	76.4	24.26	45.54	0.95	9.74	12.82	1.93	6583
F06	71.18	33.56	35.81	1.18	13.41	13.7	1.07	5233	73.92	33.52	38.41	0.9	10.57	14.82	1.15	5126	72.12	33.54	37.35	1.12	9.31	16.34	1.11	4627	71.04	31.71	37.12	0.88	10.48	16.43	1.17	5477
F07	58.74	22.67	32.52	0.3	30.09	9.87	1.43	4001	59.01	22.56	31.46	0.13	29.55	10.77	1.39	6065	69.71	25.96	38.99	0.17	16.22	11.66	1.5	7091	76.69	32.3	49.47	0	16.66	12.38	1.53	5295
F08	66.4	21.8	42.25	0.63	24.02	8.55	1.94	4738	74.48	25.21	45.87	0.52	16.8	8.1	1.82	6680	70.1	22.5	44.78	0.55	17.39	9.76	1.99	3986	70.42	24.14	43.11	0.64	15.42	11.41	1.79	5767
F09	72.67	26.74	41.62	0.45	14.64	12.19	1.56	4618	73.91	28.34	40.74	0.31	11.91	13.56	1.44	5879	74.1	24.43	46.72	0.44	8.42	14.61	1.91	4347	72.72	26.53	43.14	0.16	8.07	17.83	1.63	6762
F10	63.26	19.01	38.79	0.56	26.71	7.7	2.04	4298	66.72	19.22	41.59	0.57	24.62	8.12	2.16	5468	73.45	21.36	49.25	0.88	9.89	13.03	2.31	4258	71.1	21.84	44.41	0.39	13.86	9.65	2.03	5325
F11	71.97	28.38	40.53	0.24	10.81	16.75	1.43	4246	76.91	25.93	47.09	0.25	4.26	17.97	1.82	6744	71.56	27.45	40.56	0.38	10.65	16.73	1.48	4423	74.32	27.04	44.56	0.23	6.96	16.06	1.65	7458
F12	76.88	36.39	33.47	0.41	11.43	10.59	0.92	3702	82.45	37.45	38.76	0.73	8.32	8.7	1.04	5082	75.96	34.73	35.49	1.15	7.07	11.57	1.02	4184	78.4	34.94	38.11	0.52	6.93	12.92	1.09	6772
F13	63.12	24.91	33.79	0.55	29.53	6.75	1.36	3850	66.11	22.69	38.17	0.58	22.76	9.62	1.68	6696	68.35	26.08	36.13	0.51	13.19	11.78	1.39	4329	72.24	22.31	44.14	0.34	14.2	10.11	1.98	6429

F14 5246 61.1 26.64 28.38 0.3 33.28 4.67 1.07 0.41 23.45 6.07 42.91 14.29 1.51 50.85 0.2 19.88 7.32 1.55 28.48 0.41 7.71 32.71 5740 26.01 37.45 1.44 8120 76.65 6591 79.92 69.59 F15 70.12 29.18 36.75 0.73 18.79 10.01 3976 70.58 27.44 38.05 0.41 16.09 11.35 1.39 28.99 38.24 1.29 69.52 36.36 0.4 14.28 1.22 5762 1.26 6098 69.92 15.47 9.88 1.32 5037 29.89 14.16 M01 77.86 29.96 41.09 15.34 5.88 1.37 4459 81.76 28.51 47.15 0.14 9.46 7.29 1.65 6490 78.72 46.12 0.52 1.7 4412 82.33 28.04 49.57 0.2 7.59 1.77 6548 0.11 27.13 11.4 9.43 8.34 17.83 15.31 14.73 M02 66.29 27.43 1.32 2501 25.39 30.67 0.3 23.28 6293 26.08 36.13 4329 63.12 33.17 0.33 6747 36.11 0.84 59.72 15.35 1.21 0.51 13.19 11.78 1.39 26.77 20.62 1.24 68.35 20.18 0.54 M03 48.49 24.29 0.67 41.86 7.52 21.12 0.51 0.96 4540 24.5 24.15 5739 21.31 0.41 41.83 4913 21.26 0.88 3273 44.47 48.02 6.61 38.53 7.63 0.99 48.5 23.81 7.57 0.89 51.96 20.33 M04 67.83 32.13 0.65 9.82 0.86 28.77 0.54 22.15 9.98 4049 70.58 33.83 0.62 13.15 30.82 30.88 0.41 18.35 5140 27.6 2627 67.05 30.4 0.95 29.88 15.11 0.88 4327 68.91 11.36 75.8 14.55 0.37 M05 30.9 39.76 0.3 8.45 1.29 3951 79.98 25.02 48.87 0.2 7.29 9.67 1.95 4500 81.38 23.04 52.15 0.31 4.95 11.33 2.26 4140 80.7 23.35 52.14 5.09 10.91 2.23 5362 M06 31.14 32.72 0.49 19.03 12.09 29.6 0.19 23.31 32.27 31.34 18.13 4908 68.19 1.05 64.03 29.6 4835 79.28 0.55 11.53 29.54 0.2 1.06 3863 10.8 41.09 18.02 1.27 4025 65.73 13.75 21.87 67.5 38.47 5742 M07 0.48 13.01 26.84 0.47 15.71 16.16 0.58 22.33 0.55 16.73 63.2 26.74 33.21 1.24 1.43 68.22 25.75 35.76 16.18 15.39 5022 70.1 44.78 2.01 3986 5195 1.39 9.76 M08 57.27 23.78 21.61 10.57 33.66 0.34 12.62 0.27 38.98 0.63 9.34 30.47 0.51 1.28 61.94 24.87 17.55 6103 24.53 32.25 19.27 18.32 1.31 70.5 28.57 1.36 7145 4730 1.35 60.36 4142 15.2 M09 67.54 26.54 37.52 0.28 14.96 15.44 61.52 23.92 34.6 0.52 21.2 14.98 1.45 4821 67.24 25.58 39.47 0.51 13.57 4930 63.64 23.86 36.43 0.24 15.05 18.34 1.53 5528 1.41 3937 17.3 1.54 63.97 23.28 35.56 25.92 66.24 36.41 22.74 0.22 M10 0.52 9.3 0.28 21.77 10.39 1.5 5388 63.95 22.63 0.39 11.74 1.56 48.08 17.94 1.42 5331 1.53 3819 24.2 35.4 5334 74.05 33.78 11.28 31.05 12.26 38.57 0.22 12.15 10.37 M11 76.28 36.98 11.11 76.74 31.52 1.22 4493 79.28 32.27 0.55 37.87 0.48 1.22 5855 0.28 1.19 41.09 8.02 11.53 4025 75.75 31.08 9.63 13.34 3221 1.27 M12 71.02 32.08 36.09 0.54 14.64 13.22 28.96 34.75 0.41 18.27 11.79 5666 71.17 35.96 14.99 6910 4810 67.3 1.2 31.61 35.72 1.15 10.96 29.68 0.23 13.34 1.21 1.13 4863 69.2 1.13 16 0.36 M13 49.62 24.34 22.21 0.23 32.91 15.79 0.91 52.82 24.95 25.17 0.32 30.9 13.47 5559 57.52 27.02 27.79 22.08 18.24 1.03 50.46 22.37 25.39 0.21 27.85 1.14 6586 4363 1.01 6196 18.92 28.37 26.39 17.31 22.06 0.5 55.75 24.68 52.01 27.49 31.48 15.75 28.28 24.31 17.99 26.56 0.88 6617 M14 0.41 0.87 4194 0.8 6370 56.4 24.8 0.41 0.88 5665 55.76 28.05 24.6 0.57 16.08 M15 10.13 34.17 0.18 35.29 2.33 5543 0.25 2.23 1.99 45.71 14.46 28.79 0.14 41.67 1.99 14.69 11.42 56.57 16.82 37.53 30.2 12.31 31.93 0.23 37.25 6288 4946 51.47 5963 50.46 16.03 11.14 27.256 34.9583 0.617 1.336 4236 67.932 26.47433 37.0187 0.476333 Mean 66.42333 21.14767 10.92967 19.201 11.3863 1.45267 5737.53 70.233 26.9217 39.00167 0.642 12.81 1.51833 4844.4 69.79 27.12 39.689 0.472667 15.64567 12.921 1.51767 5913.633 15.1 Standard 9.039099 5.379678 5.81577 0.47884 8.787076 3.111263 0.368254 798.7 9.5627 4.968588 7.09762 0.322382 9.455711 3.0402 0.43076 924.261 7.68163 4.8321 6.778944 0.355053 7.10977 3.0663 0.48851 904.229 8.926 4.95462 7.948821 0.380184 8.426919 3.4313 0.44435 876.4852

Gut

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance

Supplemental material which has been supplied by the author(s)

Supplementary Table S4 The indicators of routine blood test at 2 weeks after first dose. Third represents the measurement of indicators of routine blood test at 1 week after second dose. Fourth represents the measurement of indicators of routine blood test at 2 weeks after first dose. Third represents the measurement of indicators of routine blood test at 2 weeks after first dose. Third represents the measurement of indicators of routine blood test at 1 week after second dose. Fourth represents the measurement of indicators of routine blood test at 2 weeks after first dose. Third represents the measurement of indicators of routine blood test at 1 week after second dose. Fourth represents the measurement of indicators of routine blood test at 2 weeks after first dose.
indicators of routine blood test at 2 week after second dose.

Sample ID	batch											Blood													
		White blood cell WBC 10*9/L	s Neutrophils Neu 10*9/L	Lymphocyte Lvm 10*9/L	Monocytes Mon 10*9/L	Eosinophils Eos 10*9/L	s Basophil Bas 10*9/L	Red blood cells RBC 10*9/L	Hemoglobin concentration HGB g/L	Mean corpuscular volume MCV fL	Mean corpuscular hemoglobin MCH pg	Mean corpuscular hemoglobin concentration MCHC g/L	Red blood cell volume distribution width- RDW-SD fL	SD Platelet PLT 10*9/L	Mean platelet volume MPV fL	Platelet Distribution Width PDW	Plateletcrit PCT %	P-LCC	NEU%	LVM% N	MON% EO	S% BAS	% Hematocrit HCT %	RDW-CV	P-LCR
F01	First	6.12	2.84	2.85	0.37	0.04	0.02	4.04	116	83.1	28.6	28.6	42.7	149	12.1	16.5	0.18%	62	46.30%	13.30% 6	6.30% 0.8	0% 0.20%	% 34.90%	13.70%	41.80%
	Second	6.11	3.02	2.65	0.38	0.05	0.01	4.16	119	83.8	28.5	28.5	40.8	169	12.1	16.4	0.21%	71	49.40%	54.40% 6	6.30% 4.0	0% 0.20%	% 36.10%	13.00%	42.00%
	Third	5.45	1.92	2.96	0.34	0.22	0.01	4.29	124	84	28.8	28.8	40.9	174	12.3	16.6	0.21%	76	35.10%	10.20% 6	6.30% 1.3	0% 0.40%	% 33.90%	13%	43.50%
	Fourth	6.21	3.22	2.5	0.39	0.08	0.02	4.05	117	83.6	28.9	28.9	39.9	163	11.6	16.5	0.19%	64	51.80%	84.00% 5	5.50% 1.2	0% 0.01%	% 35.40%	12.80%	39.00%
F02	First	4.89	1.81	2.58	0.43	0.05	0.02	4.59	118	79.2	25.6	324	49	263	9.8	15.6	0.26%	65	36.90%	l6.30% 7	7.70% 1.1	0% 0.10%	% 37.20%	16.60%	24.90%
	Second	5.3	2.37	2.45	0.41	0.06	0.01	4.61	119	80.8	25.9	320	48.1	236	10.2	15.9	0.24%	68	44.80%	58.70% 6	6.60% 1.8	0% 0.30%	% 34.20%	16.00%	28.80%
	Third	4.03	1.35	2.37	0.27	0.03	0.01	4.22	113	81.1	26.7	330	46.2	210	10.3	15.9	0.22%	59	33.60%	60.70% 9	9.00% 0.9	0% 0.30%	% 36.00%	15.30%	28.20%
	Fourth	4.24	1.24	2.57	0.38	0.04	0.01	4.45	118	81	26.5	327	45.1	225	9.5	15.7	0.21%	53	29.10%	52.80% 7	7.90% 1.1	0% 0.90%	% 37.90%	14.90%	23.50%
F03	First	4.91	1.93	2.74	0.18	0.05	0.01	3.98	117	85.7	29.4	343	40.7	250	9.1	15.9	0.23%	52	39.20%	17.50% 5	5.30% 1.9	0% 0.30%	% 36.40%	12.80%	20.70%
	Second	5.2	2.33	2.47	0.28	0.1	0.02	4.2	123	86.5	29.4	339	41.8	199	9.4	16	0.19%	46	45.00%	43.40% 4	4.10% 1.9	0% 0.00%	% 35.50%	13.00%	23.20%
	Third	5.62	2.9	2.44	0.23	0.05	0	4.17	120	25.1	28.8	338	40.7	213	9.2	15.9	0.20%	46	51.60%	33.70% 3	3.70% 0.3	0% 0.20%	% 36.50%	12.90%	21.70%
	Fourth	8.62	5.35	2.9	0.32	0.03	0.02	4.35	124	83.9	28.5	340	40.1	222	8.9	15.9	0.20%	43	62.10%	38.30% 7	7.00% 2.4	0% 0.20%	% 33.20%	12.80%	19.30%
F04	First	6.24	3.2	2.53	0.42	0.07	0.02	4.95	140	83.8	28.2	337	37.5	200	11.2	16.2	0.22%	72	51.30%	34.30% 6	6.40% 1.4	0% 0.20%	% 40.40%	12.00%	36.00%
	Second	7.14	4.12	2.45	0.46	0.1	0.01	4.87	140	83	28.8	347	37	190	11.7	16.2	0.22%	76	57.70% 2	29.60% 5	5.10% 1.9	0% 0.30%	% 40.00%	11.90%	40.30%
	Third	8.53	3.8	2.52	0.44	0.16	0.03	4.81	135	83	28	338	36.3	198	11.3	16.3	0.22%	73	63.10%	38.90% 6	6.30% 0.7	0% 0.40%	% 38.90%	11.80%	36.80%
	Fourth	7.28	3.91	2.83	0.46	0.05	0.03	4.76	134	81.7	28.2	345	36.5	198	11.1	16.4	0.22%	72	53.70%	36.60% 6	6.30% 1.3	0% 0.20%	% 38.10%	12.00%	36.10%
F05	First	5.06	3.14	1.61	0.23	0.06	0.02	4.19	124	86.5	29.6	342	39.6	204	9.2	15.7	0.19%	42	62.10%	37.20% 6	6.00% 2.2	.0% 0.50%	% 36.40%	12.30%	20.70%
	Second	6.24	3.38	2.32	0.37	0.14	0.03	4.18	123	87.1	29.4	338	40.5	232	8.8	15.8	0.21%	42	54.10%	37.20% 4	4.70% 2.8	0% 0.40%	% 36.70%	12.50%	17.90%
	Third	5.61	3.08	2.09	0.26	0.16	0.02	4.2	124	87.5	29.6	338	40.7	204	9.1	15.6	0.19%	39	54.90%	36.10% 6	6.70% 1.7	0% 0.50%	% 34.80%	12.50%	19.00%

F06	Fourth First	5.22 6.46	2.87 2.61	1.88 3.34	0.35 0.42	0.09 0.08	0.03 0.01	4.06 4.17	118 134	85.7 92.2	29.1 32	339 347	39.5 41.2	196 235	8.7 9.5	15.8 15.9	0.17% 0.22%	3555.00%27.90%6.10%1.70%0.40%36.20%12.30%17.80%5340.40%46.90%5.80%1.20%0.30%39.20%12.10%22.60%
	Second	5.64 6.57	2.57	2.65	0.33	0.07	0.02	4.28 4.24	132	91.5 90.3	30.9 31 4	337 348	40.1	255 278	9.2	15.6 15.7	0.23% 0.25%	52 45.80% 45.50% 5.50% 1.20% 0.30% 38.30% 11.80% 20.30% 55 47.50% 43.70% 6.60% 0.80% 0.30% 40.10% 11.50% 19.70%
	Fourth	7.28	3.54	3.18	0.48	0.06	0.02	4.47	137	89.7	30.7	342	37.9	270	9.4	16.1	0.26%	65 48.60% 44.10% 7.70% 2.10% 0.40% 36.80% 11.30% 24.00%
F07	First Second	5.35 4.97	2.65 2.62	2.14 1.94	0.48 0.32	0.05 0.06	0.03 0.03	4.98 5.19	134 136	80.6 81.3	26.9 26.1	333 321	38.5 38.7	177 219	10.3 9.9	16 15.8	0.18% 0.22%	52 49.60% 39.10% 6.50% 1.20% 0.60% 42.20% 12.90% 29.20% 56 52.60% 38.50% 6.90% 1.40% 0.20% 37% 12.80% 25.70%
	Third	4.76	2.52	1.83	0.33	0.07	0.01	4.61	128	80.2	27.6	345	38.4	195	10	16	0.20%	51 53% 39.40% 7.50% 1.20% 0.30% 37.50% 12.80% 26.20%
F08	Fourth First	5.29 8.1	2.73 3.68	2.08 3.9	0.4 0.32	0.06 0.17	0.02 0.03	4.65 4.34	129 135	80.5 90.7	27.8 31	345 341	39 40.9	196 317	10.2 8.4	16.1 16	0.20% 0.27%	56 51.60% 31.00% 6.90% 0.90% 0.50% 38.90% 13.00% 28.30% 51 45.40% 41.60% 4.40% 2.40% 0.40% 38.80% 12.10% 16.20%
	Second	7.57	3.88	3.15	0.33	0.18	0.03	4.28	132	90.8	31	341	40.8	319	8.4	15.9	0.27%	48 51.20% 37.50% 4.20% 1.70% 0.40% 40.90% 12.10% 15.10% 50 50 60 60 60 60 60 60 60
	Fourth	7.58 8.77	4.26 5.34	2.84 2.89	0.32 0.37	0.13 0.13	0.03 0.04	4.53 4.57	141	90.4 89.6	31.3 30.8	346 344	40.8 40.7	334 370	2.2 8.3	16 15.9	0.28% 0.31%	53 56.20% 32.90% 4.20% 1.50% 0.50% 41.00% 12.20% 15.80% 59 60.90% 32.10% 4.20% 1.30% 0.40% 37.80% 12.20% 15.90%
F09	First	5.32	2.27	2.48	0.51	0.05	0.01	4.53 4.74	128 134	85.4 83.8	28.3	331 336	41.6 39.7	194 191	9.6 9.1	16.2 15 9	0.19% 0.17%	45 42.80% 45.50% 9.40% 0.90% 0.10% 39.80% 13.10% 23.20% 39 44.10% 41.50% 9.30% 1.50% 0.10% 93.10% 12.70% 20.50%
	Third	5.36	2.8	2.89	0.8	0.08	0.01	4.74	130	83.9	27.8	332	40.2	209	9.1 9.4	15.9	0.17%	39 44.10% 41.50% 9.30% 1.50% 0.10% 93.10% 12.70% 20.50% 46 47.60% 44.40% 7.80% 0.90% 0.10% 39.30% 12.80% 21.90%
F10	Fourth First	6.05 5.2	2.83 2 4	2.69 2.21	0.47 0.32	0.05 0.25	0.01 0.02	4.7 4 39	130 109	83.6 79	27.6 24.9	330 315	40.2 43.9	207 237	9.2 10.3	15.9 15.6	0.19% 0.24%	43 46.80% 42.10% 9.30% 2.00% 0.10% 36.80% 12.90% 20.50% 69 46.20% 33.80% 7.70% 3.40% 0.50% 35.50% 14.90% 29.20%
	Second	5.29	2.88	1.79	0.41	0.18	0.03	4.5	111	79	24.6	312	42.2	225	10.5	26.1	0.26%	72 54.60% 40.70% 3.20% 6.80% 0.50% 33.55% 14.30% 32.10%
	Third Fourth	4.61 4.54	2.25 2.24	1.88 1.8	0.15 0.26	0.31 0.24	0.02 0	4.27 4.15	106 103	78.5 77.7	24.7 24.9	315 320	41.5 41.3	252 199	11.6 10.2	15.8 16	0.29% 0.20%	99 48.80% 39.60% 5.70% 5.30% 0.10% 32.30% 14.20% 39.20% 58 49.30% 32.00% 5.30% 2.90% 0.40% 32.40% 14.30% 28.90%
F11	First	4.05	1.99	1.66	0.32	0.06	0.02	4.47	97	69.6	21.6	311	41.2	234	10.5	15.7	0.25%	76 49.20% 48.80% 7.70% 2.20% 0.50% 31.60% 15.80% 32.60% 40.00% 40.00% 40.00% 40.00% 45.00% 32.60%
	Second Third	3.04 4.46	1.24 2.29	1.48 1.75	0.23 0.31	0.07 0.1	0.02 0.01	4.54 4.47	99 96	69.7 68.9	21.9 21.4	314 311	41 39.9	286 290	20.6 10.7	15.9 15.7	0.30% 0.31%	96 40.80% 39.20% 6.90% 2.30% 0.30% 30.80% 15.80% 33.70% 98 51.30% 50.60% 7.50% 2.20% 0.40% 30.50% 15.50% 34.00%
F10	Fourth	4.14	1.63	2.09	0.31	0.09	0.02	4.5	97 108	67.8	21.6	318	39.2	277	10.4	16	0.29%	88 39.30% 45.70% 8.10% 2.90% 0.50% 29.70% 15.50% 31.80% 66 56.00% 25.20% 7.20% 1.50% 0.40% 26.20% 11.70% 20.80%
F12	Second	5.26	2.63	2.45 1.85	0.41	0.12	0.02	4.17 4.2	127	86.4	30.4	358	36.8	215	9.9	15.9	0.23%	56 56.00% 55.20% 7.30% 1.50% 0.40% 36.30% 11.70% 30.80% 58 55.60% 35.20% 7.00% 2.10% 0.30% 38.40% 11.40% 25.30%
	Third Fourth	6.78 6.74	3.76 3.14	2.39 3.03	0.47 0.42	0.14 0.13	0.02 0.02	4.56 4.34	134 129	84.2 84.9	29.5 29.7	350 349	35.7 36.7	239 255	9.7 9.4	15.9 15.8	0.23% 0.24%	58 55.40% 44.90% 6.20% 1.90% 0.30% 36.80% 11.40% 24.40% 56 46.70% 39.80% 6.90% 1.90% 0.40% 39.80% 11.60% 21.90%
F13	First	5.68	3.06	2.23	0.31	0.06	0.02	3.98	126	89	31.6	355	37.4	239	8.5	15.7	0.20%	38 53.80% 35.80% 5.50% 1.30% 0.40% 36.10% 11.30% 16.00%
	Second Third	4.9 4.2	2.8 1.87	1.75 1.91	0.27 0.24	0.06 0.16	0.02 0.02	4.04 3.95	129 122	89.4 88.8	31.9 30.8	357 347	37.9 38.6	232 220	8.25 8.3	15.7 15.9	0.20% 0.18%	37 57% 45.50% 5.70% 3.80% 0.40% 35.00% 11.40% 16.10% 33 45% 38.90% 4.80% 1.80% 0.30% 38.40% 11.70% 15.10%
	Fourth	5.52	2.99	2.15	0.26	0.1	0.02	4.27	133	89.8	31.2	347	39.7	251	8.3	15.7	0.21%	38 54.20% 43.20% 6.20% 2.00% 0.50% 34.10% 11.90% 15.30%
F14	First Second	9.12 5.85	3.42 2.1	4.98 3.25	0.48 0.35	0.21 0.13	0.03 0.02	4.72 4.62	134 130	81.7 85	28.3 28.1	347 331	36 37.8	261 242	9.1 9.2	15.9 16	0.24% 0.22%	53 37.50% 55.60% 6% 2.30% 0.40% 39% 11.80% 20.20% 51 35.70% 44.70% 4.90% 2.30% 0.10% 37.90% 12% 21.10%
	Third	5.84	2.8	2.61	0.29	0.13	0.01	4.64	132	81.7	28.4	347	39.5	239	9.1	15.9	0.22%	49 48% 55.30% 4.70% 1.60% 0.40% 36.70% 11.70% 20.50%
F15	Fourth First	4.96 12.36	1.89 6.7	2.74 4.78	0.23 0.72	0.08 0.12	0.02 0.04	4.41 4.57	124 144	83.2 85.7	28 31.4	336 367	37.3 37.5	208 287	9.3 9.2	15.9 15.9	0.19% 0.26%	46 38.00% 51.20% 5.90% 1.30% 0.40% 36.80% 12.10% 22.00% 61 54.20% 38.70% 5.80% 1.00% 0.30% 39.10% 11.70% 21.30%
	Second	11.92	6.74	4.46	0.57	0.14	0.01	4.99	140	87.5	29.9	342	39.6	260	9.7	15.8	0.25%	63 56.50% 37.40% 4.80% 1.20% 0.10% 41% 12.10% 24.30%
	Third Fourth	10.33 8.23	4.64 4.23	4.98 3.37	0.51 0.5	0.19 0.12	0.01 0.01	4.65 4.14	140 124	87.4 86.6	30 30	343 347	39.3 38.5	259 205	10.5 9.4	15.9 16	0.27% 0.19%	82 45% 48.20% 4.90% 1.80% 0.10% 40.70% 12.10% 31.50% 45 51.40% 41.00% 6.10% 1.40% 0.10% 35.80% 11.90% 22.00%
M01	First	8.48	4.2	3.69	0.38	0.2	0.01	5.39	159	85.7	29.6	345	39.2	294	9.6	16.2	0.28%	73 49.50% 43.50% 4.50% 2.40% 0.10% 46.20% 12.30% 24.90% 65 40.20% 40.20% 40.20% 40.40% 10.10% 25.50%
	Third	6.58 7.1	2.78 3.46	3.17 2.89	0.32 0.38	0.28 0.36	0.03	5.08 5.22	155	85.8	30.5 29.4	357 343	38.6 40.1	256 234	9.7 10.2	16.2	0.25% 0.24%	65 42.30% 48.20% 4.80% 4.30% 0.40% 43.40% 12.10% 25.50% 67 48.70% 40.70% 5.30% 5.10% 0.20% 44.80% 12.60% 28.70%
M02	Fourth First	7.25 5.51	3.37 3.33	3.1 1.41	0.46 0.7	0.28 0.05	0.04 0.02	5.11 4.71	153 145	85.7 87.2	29.9 30.8	349 354	39.9 37.9	255 183	9.6 9.7	16.3 16.2	0.25% 0.18%	6346.60%42.80%6.30%3.80%0.50%43.80%12.50%24.80%4560.50%25.60%12.70%0.90%0.30%41.00%11.60%24.40%
	Second	5.15	2.48	2.09	0.41	0.14	0.03	4.7	142	87.9	30.2	344	38.3	198	8.9	15.8	0.18%	37 48.30% 40.60% 7.90% 2.70% 0.50% 41.30% 11.70% 18.60%
	Third Fourth	5.7 7.38	2.95 3.9	2.21 2.81	0.42 0.61	0.11 0.05	0.01 0.01	4.81 4.91	148 150	87.9 87.3	30.9 30.6	351 350	40.3 39.2	208 205	9.2 9.2	16 16.1	0.19% 0.19%	42 51.80% 38.70% 7.30% 2.00% 0.20% 42.30% 12.30% 20.10% 43 52.80% 38.10% 8.20% 0.70% 0.20% 42.90% 12.10% 20.80%
M03	First	7.12	4.38	2.23	0.41	0.09	0.01	5.22 5.53	150 155	83.7	28.8	345	38	248 250	9	16.1 16	0.22%	53 61.70% 31.30% 5.70% 1.20% 0.10% 43.60% 12.20% 21.40% 51 55 50% 36.30% 6.50% 1.50% 0.20% 46% 12.00% 20.50%
	Third	6.71	3.29	2.34 2.87	0.42	0.14	0.01	5.31	150	83.7	28.3	338	38.7	236	9.1	15.9	0.23%	31 35.30% 36.30% 1.30% 0.20% 46% 12.00% 20.30% 48 49% 42.70% 6.00% 2.10% 0.20% 44.50% 12.40% 20.20%
M04	Fourth First	9.13 7.4	4.9 4.7	3.5 1.88	0.58 0.4	0.14 0.41	0.01 0.01	5.52 5.03	155 151	81.2 85.5	28.1 29.9	346 350	36.4 40.1	248 250	8.7 9.1	15.9 16.1	0.22% 0.23%	46 53.70% 38.30% 6.40% 1.50% 0.10% 44.80% 12.00% 18.60% 51 63.40% 25.40% 5.60% 0.20% 43.00% 12.60% 20.30%
	Second	7.06	3.98	2.24	0.35	0.47	0.02	5.01	149	85.9	29.8	347	40.5	245	9	16.1	0.22%	51 56.40% 31.70% 5% 6.60% 0.30% 43% 12.60% 20.90%
	Third Fourth	8.57 8.66	5.06 5.11	2.52 2.69	0.46 0.42	0.51 0.42	0.02 0.02	5.09 5.12	148 150	86.2 84.5	29.1 29.3	337 346	39.8 38.8	285 294	8.6 8.6	16 16.1	0.24% 0.25%	52 59% 29.40% 5.40% 6.00% 0.20% 43.90% 12.40% 18.20% 52 59.00% 31.10% 4.90% 4.80% 0.20% 43.30% 12.30% 17.70%
M05	First	5.24	2.66	2.03	0.34	0.19	0.02	5.26	153	85.2	29.1	342	38.4	231	9.2	16.1	0.21%	51 50.70% 38.80% 6.50% 3.60% 0.40% 44.80% 12.20% 22.10% 61 55.70% 34.70% 6.20% 3.20% 0.20% 43.60% 13.10% 35.00%
	Third	5.85	2.95	2.32	0.34 0.27	0.18	0.01	5.17	152	83.4	29.3	348	37.7	245 261	9.7	16.1	0.24%	61 55.70% 54.70% 6.20% 5.20% 0.20% 43.60% 12.10% 23.00% 56 50.20% 39.70% 4.17% 5.20% 0.20% 43.20% 12.10% 21.50%
MOG	Fourth	6.52 5.6	3.91	2.05	0.31	0.24	0.01	5.06 5.4	149 155	83.1 83.9	29.5 28.6	356 341	37.4 36.5	272	9.1 o	16.1 16	0.25% 0.28%	58 60.00% 31.40% 4.70% 3.70% 0.20% 42.00% 12.10% 21.30% 64 52.10% 39.10% 5.20% 3.40% 0.20% 45.30% 11.70% 20.60%
Wiee	Second	5.02	2.29	2.27	0.26	0.18	0.02	5.44	153	83.9	28.2	336	36.9	254	8.8	15.7	0.22%	46 45.70% 45.30% 5.20% 3.50% 0.30% 45.60% 11.80% 18.10%
	Third Fourth	5.66 4.91	3.09 2.81	2.1 1.67	0.27 0.32	0.19 0.1	0.01 0.01	5.51 5.43	156 151	83.6 83.3	28.3 27.8	339 334	38 37.7	306 312	8.7 8.4	16 15.6	0.27% 0.26%	55 54.60% 37.10% 4.70% 3.40% 0.20% 46.10% 12.20% 17.90% 49 57.10% 34.00% 6.50% 2.10% 0.30% 45.20% 12.10% 15.80%
M07	First	4.01	1.14	2.17	0.28	0.09	0.03	4.95	146	87.9	29.4	334	39.7	185	11.3	16.6	0.21%	67 35.80% 54.20% 7.00% 2.20% 0.80% 43.50% 12.20% 36.10%
	Second Third	4.47 5.56	1.69 2.33	2.46 2.69	0.24 0.36	0.07 0.16	0.61 0.02	5.01 4.89	146 144	87.5 87.8	29.2 29.5	334 336	39.1 39.6	183 177	11.7 12.6	16.6 16.4	0.21% 0.22%	72 38.00% 55% 5.30% 1.50% 0.20% 43.80% 12% 39.40% 82 42.10% 48.30% 6.40% 2.80% 0.40% 42.90% 12.10% 46.20%
MOQ	Fourth	5.08	2.43	2.24	0.34	0.06	0.01	5	147 167	87.7 85 <i>4</i>	29.3	335	39.9	164 240	11.4	16.5 15 7	0.19%	59 47.80% 44.10% 6.70% 1.20% 0.20% 43.80% 12.20% 36.20% 46 42.90% 47.00% 7.60% 2.30% 0.20% 49.00% 12.30% 10.30%
MOO	Second	6.32	2.69	3.01	0.45	0.14	0.02	5.54	166	85.3	30	352	38.9	240	9 7.9	15.5	0.19%	40 42.90% 47.00% 7.00% 2.30% 0.20% 49.00% 12.30% 19.30% 30 42.60% 47.70% 7.10% 2.30% 0.30% 47.30% 12.20% 12.30%
	Third Fourth	6.36 6.74	2.61 2.65	3.05 3.38	0.44 0.49	0.24 0.18	0.02 0.04	5.58 5.52	167 165	86.1 84.9	29.9 29.8	347 352	39.5 38.5	235 249	8.2 7.9	15.6 15.6	0.19% 0.20%	34 41% 48.00% 6.90% 3.80% 0.30% 48.00% 12.40% 14.60% 33 39.50% 50.10% 7.20% 2.60% 0.60% 46.90% 12.20% 13.40%
M09	First	6.11	3.28	2.34	0.36	0.13	0	4.9	144	87.8	29.4	335	42.2	266	8.8	16	0.24%	51 53.70% 38.30% 5.90% 2.10% 0.00% 43.00% 12.90% 19.30% 54 55.00% 60.00% 6.00% 6.00% 45.00% 10.70% 00.00%
	Third	9.81	4.4 5.57	2.58 3.57	0.36 0.46	0.21	0.01	5.2 5.3	152	88. I 85.9	29.2 29.5	332	41.4 38.8	207 290	8.8 8.8	16.2	0.24% 0.26%	54 55.90% 36.00% 5.00% 2.90% 0.20% 45.80% 12.70% 20.20% 56 56.80% 36.40% 4.70% 2.10% 0.00% 45.50% 12.20% 19.40%
M10	Fourth First	8.69 7.84	4.58 4.34	3.34 2.91	0.56 0.42	0.18 0.14	0.03 0.03	5.37 5.31	156 150	85.1 83.8	29.1 28.2	342 337	39 37.4	295 248	8.5 9.9	16 16.4	0.25% 0.25%	49 52.80% 38.40% 6.40% 2.10% 0.30% 45.70% 12.30% 16.70% 66 55.40% 37.10% 5.30% 1.80% 0.40% 44.50% 12.00% 26.60%
	Second	6.92	3.14	3.22	0.34	0.18	0.04	5.25	149	84.7	28.3	335	37.8	266	9.8	16.4	0.26%	69 45.30% 46.60% 4.90% 2.60% 0.60% 44.40% 12.00% 25.90%
	Third Fourth	7.7 8.39	3.51 4.59	3.59 3.26	0.37 0.42	0.21 0.09	0.02 0.03	5.25 4.84	151 140	83.7 84.3	28.8 28.9	344 343	37.3 37.7	237 228	9.8 9.6	16.3 16.3	0.23% 0.22%	64 45.60% 46.60% 4.80% 2.70% 0.30% 44% 11.90% 26.80% 56 54.70% 38.80% 5.00% 1.10% 0.40% 40.80% 12.00% 24.40%
M11	First Second	6.29 6.25	3.78 3.47	2.13 2.39	0.28 0.31	0.09	0.01	5.56 5.24	165 154	87 86 8	29.7 29.4	342 338	40 40	183 177	11.4 11 3	16.8 16.5	0.21% 0.20%	68 60.20% 33.80% 4.40% 1.40% 0.20% 48.40% 12.40% 37.30% 65 55.70% 38.20% 4.90% 0.90% 0.30% 45.50% 12.40% 36.90%
	Third	7.84	4.59	2.69	0.38	0.16	0.02	5.4	162	87.2	30	344	41.3	219	10.7	16.7	0.24%	73 58.50% 34.30% 4.90% 2.10% 0.20% 47.10% 12.70% 33.10%
M12	Fourth First	8.83 7.06	5.14 2.91	3.21 3.39	0.36 0.44	0.1 0.3	0.02 0.02	5.29 4.56	159 135	86.4 87.7	30.1 29.5	348 337	40.7 37.2	206 326	10.8 8.1	16.6 15.6	0.22% 0.26%	7058.20%36.40%4.10%1.10%0.20%45.70%12.60%34.10%4541.20%48.00%6.30%4.20%0.30%40.00%11.40%13.90%
	Second	8.01	3.29	3.8	0.54	0.34	0.04	4.57	139	88.3	30.4	344	38.5	291	8.2	15.5	0.24%	40 41.10% 47.40% 6.80% 4.20% 0.50% 40.30% 11.70% 13.60% 40 40.30% 50.00% 50.00% 14.00% 14.00%
	Fourth	6.47 7.25	2.39 2.78	3.38 3.65	0.37 0.46	0.3 0.32	0.03 0.04	4.41 4.61	136	89 87.8	30.7 30.6	345 348	39.2 38.3	268 276	8.47 8.3	15.7	0.23% 0.23%	39 37% 52.30% 5.70% 4.60% 0.40% 39.20% 11.80% 14.60% 41 38.30% 50.40% 6.40% 4.40% 0.50% 40.50% 11.70% 14.90%
M13	First Second	5.95 7 84	3.03 4.26	2.59 3.22	0.26 0.25	0.06 A	0.01 0.02	5.26 5.03	155 152	85.1 85.7	29.4 30.2	346 352	39.3 38.1	303 291	8.6 9	15.8 15.8	0.21% 0.26%	51 51.00% 43.50% 4.40% 1.00% 0.10% 44.80% 12.40% 16.90% 55 54.40% 41.10% 3.20% 1.10% 0.20% 43.10% 11.90% 18.80%
	Third	7.14	3.56	2.91	0.4	0.21	0.06	5.21	154	85.6	29.6	346	38.7	329	8.4	15.7	0.28%	53 54.4076 41.1076 6.2076 40.1076 10.0076 52 49.80% 40.70% 5.60% 3.00% 0.90% 44.60% 12.10% 15.70%
M14	Fourth First	6.95 7.37	3.39 3.96	2.98 3	0.47 0.35	0.09 0.05	0.02 0.01	5.15 5.47	156 157	84.3 85.3	30.3 28.7	359 336	37.5 43.5	297 191	8.2 9.5	15.7 16.2	0.25% 0.18%	4448.80%42.90%6.70%1.30%0.30%43.40%11.90%14.80%4553.60%40.70%4.80%0.70%0.20%46.70%13.70%23.80%
	Second	8.4	3.53	4.42	0.36	0.06	0.03	5.42	155	85.6	28.5	333	43 40 F	205	9.4	16.2	0.19%	48 42.10% 52.60% 4.30% 0.70% 0.30% 46.40% 13.50% 23.20% 38 44.90% 51.20% 2.10% 0.90% 0.00% 47.40% 10.00% 10.40%
	Fourth	6.39	ی. 2.82	3.70 3.23	0.23	0.06	0.01	5.63	163	00.4 83.5	20.5 29.1	348	43.5 41.2	206 185	o.o 8.7	15.9 15.9	0.16%	30 -+30 / 0 31.20 / 0 31.10 / 0 0.00 / 0 47.40 / 0 13.60 / 0 18.40 / 0 35 44.20 / 0 50.50 / 0 4.40 / 0 0.80 / 0 10 / 0 47.00 / 0 13.20 / 0 18.90 / 0
M15	First Second	7.74 6 22	3.4 2 77	3.62 2.9	0.53 0 4	0.17 0 14	0.02 0.01	5.54 5.28	163 156	86.3 86 1	29.4 29.5	339 342	39.1 38 2	228 221	9.7 <u>9</u> 4	16.1 16	0.22% 0.21%	56 43.80% 46.80% 6.90% 2.20% 0.30% 48.00% 12.20% 24.80% 49 44.40% 46.70% 6.50% 2.20% 0.20% 45.50% 11.90% 22.00%
	Third	6.93	3.3	3.01	0.49	0.12	0.01	5.27	155	85.7	29.4	343	38.8	231	9.3	15.9	0.22%	52 47.50% 43.50% 7.00% 1.80% 0.20% 45.20% 12.10% 22.50%
Mean	Fourth First	8.18 6.45	3.91 3.2	3.42 2.7	0.65 0.43	0.16 0.12	0.04 0.018	5.44 4.79	161 139.3	84.5 84.89	29.6 28.93	350 340.47	37.8 39.77	236 238.3	9.4 9.64	15.9 16.02	0.22% 0.25%	5347.70%41.80%8.00%2.00%0.50%46.00%12.00%22.60%56.349.54%41.98%6.26%1.93%0.29%40.85%12.63%24.57%
	Second	6.27	3.1	2.65	0.37	0.14	0.04	4.83	138.97	85.15	28.85	338.77	39.62	235.87	9.92	16.33	0.23%	55.6 49.08% 42.55% 6.01% 2.17% 0.32% 40.99% 12.51% 24.24% 57.67 40.07% 40.21% 5.00% 0.000% 40.50% 12.51% 24.24%
	Fourth	0.48 6.78	3.17 3.45	2.71 2.77	0.36 0.41	0.18 0.13	0.016	4.8	138.47	o2.73 84.1	28.9	340.43 342.7	39.62 39.05	241.2 238.87	9.42 9.3	15.99 16	0.23% 5 0.22%	57.57 42.50% 42.50% 12.54% 24.51% 52.4 50% 41.65% 6.17% 1.89% 0.31% 40.34% 12.49% 22.71%
Standard	First Second	1.65 1.55	1.04 n aa	0.84 0 71	0.22 n na	0.09 n na	0.0087 0 1062	0.5127 0 4513	17.174 15.41316176	4.0387 3 934	2.04 1 9991	2.6351 2.2957	44.5175 35 9831	0.9433 2 232	0.2918	0.0003 0.0003	10.116 14.02	1.65 0.078 0.0186 0.0123 0.00156 0.0473 0.01208 0.0674 1.55 0.065 0.0646 0.013 0.0128 0.00146 0.0406 0.0109 0.077
σσναιση	Third	1.52	0.94	0.67	0.09	0.1	0.0114	0.4731	16.96567	11.4384	1.9374	1.9665	41.0117	1.7564	0.27	0.000333	16.907	1.52 0.0684 0.0671 0.013 0.01456 0.0017 0.1042 0.0096 0.077 1.52 0.0684 0.0671 0.013 0.01456 0.0017 0.1042 0.0096 0.0851
		15	1 00		0.1	0.00	0 0111	0 4761	17 1771	1 0705	1 0000	1 7511	40 5074		0 0600	0 000222	10 071	

Gut

																	_																																			
	ACC 1999 7			-			B 1834 757	1001		7001 100	1000 1000	1007 7000	DER PROPERTY.	ARE 1994 7	ALL 1811 197	AL 1410 197	49 2010 17	-		MED 7458	DATE DATE	-	-	-	7 200 100		DOD 2000	DATE THE .	-		-		-	AND AND A	-	-	1000 ALC: 100		ALC: 100 10	-	1014 1015 101	1 100 100	1000 1000 100		100 100 1			_				104 104
-	at 1 1 1 1											al a					-				ALC: 10.0	at 1 at 1						ALC: 44.5																							at 1 1 1 1	
CONTRACTOR	15.15 15.15	10.47 10.10 2	1.10 11.10 10	1.17 23.4 20	In 18.00 Ja.	10 10.10 10	11 25.52 20.1	25.95 25	AL 20.21 14.1	0 10 1 10 1	10.01 0.01	25.52 21.20	ALS: 10.10	10.10 10.10	15.05 15.12 17		18 H.M. F.	1 14.0 04	10 13.50 10.0	35.10 20.30	10.01 20.00	10.14 10.17	1.0 1.0 1	0.15 in.1s in.	10 10.07 10.0	at it. in it. it. it	1 25.58 22.5	16.15 16.10	6.01 15.01 2	1.00 M.I I	1.4 10.51 10.1	10 15.00 10.1	1 15.02 15.11	\$1.41 H.44	16.11 15.00 10.1		20.4 15.00 2	1.4 15.51 10.47	10.10 20.0 1	1.52 in.15 in.1	1.10 1.00 1	41 15.17 18.4	stat in it is	1.54 25.95 20.7	1 11.10 10.00	stat is a in	A 18.10 15.10	25.5 10.40 21	14 16.25 15.75	44.50 H.00 H	1.11 1.11 10.11	4 15.18 15.50
CONTRACTOR	1.25 0.52	4.5 1.69 1	0.04 1.05 1	6.1 0.61 0	A 4.16 L	4 6.48 6			81 9.42 9.4		6 6 M 9.51	6.24 6.52	6.04 6.04	0.01 0.00	A.16 A.45 G		1 1.0 1	.44 0 5.	44 4.30 4.3	1.12 0.3		0.3 0.10	0.00 0.00		1. 1.6 L	24 6.22 6.4	4 4.44 4.44	6.62 6.20	1.1 0.00	LAN 1.1 1	1.00 0.4 0.1	10 0.00 0.0	1 1.0 1.0	6.13 0.14	5.12 5.41 5.1		6.64 6.2 6	11 6.6 6.14	1.12 1.28	1.44 0.44 0.4	LL 1.0 1	41 4.16 1.4	1.10 0.45		0.00 0.00	1.14 1.12 1	41 1.00 0.00	6.14 0.49 0	AL 6.12 6.04	6.42 6.54 1	A.51 A.12 A.20	1.14 0.00
1.000.000	1.10 25.10				14 pt. 10 pt.	AL 12.40 M		1.14 11.	AL 8.46 PL	a		11.00 0.00	11.11 11.11 1	2.51 25.25 1	2.50 A.89 IL				AN 12.55 5.5	5 5.50 FL	12.00 12.00	1.10 14.10	10.00 PL 11	L 10 (A. 11 (A.	10 N.M. PL		1 11 10 11 10	25.00 15.25	N. W. ILLER		L 01 00.00 PL 0	AL 16.4 11.4	1 15.10 1.01	A.10 00.15	AL 44 19.100 1.1	1 1.18 1.11	AL 11. 1.00 AL		AT 12 1	LIS SLOV III.	1.4 1.4		1 10.10 10.00 1	1.00 01.00 00.0	1 1.0 1.0		A 11.11 11.1	ALL 11.10 1	The section of the se	PL PL 10.107 1	A.14 15.00 10.10	25.13 25.2
100																																																				
Pyramiddantar pianilana							\$ 3.500 L.00			6 6.18M											6.000								inthe state				a number of home		1.101y 1		0 5.52m															
		0 0.000 L	.008 0.0	and a serie a s		61 1.002 1.1	0. 0. NO. 2		0 6.005			1.004 0		a a. onia.	0.0.001			0 L.000 L.M	68 8.002 6.00	0.004 L.008	0.004 0.011	1.0024 1.0022 1						8 6.000		0.0.000		64 U U	0 0 K.061 /	1.014 1.002 1	3.5011 1.000	0 0.002 0.1005	0.0012 0 0.0	0 6 6 66 66			0 6,100 0.1	16 U U	0.000 0.000	8 6.960 1	0.000 0	0 L000 L1		0.001 0	1 1.051 1.001	0.0000 0		
Read to be provide and think		4 6.000					-		0 0.1124 0.00						100			* *			0.001					8 6.680		8 6.000		0.0.00																	1 1.008 1					
	1.000			: :	1	: :	i and an	1.00	d 1.50		1.000 I	5 a.m.d			1 1.0	and a set	: :	1 111			1.000	1.000		1	1 1		: : :		1.444.4			1.000	: : :		and and	1.00	1 1 100	1.000	1.000	1 1 1 1 1		4 5.000 5.000	1.000 1.000 1.0	- 1 a.m.		1 1	al and and	1 1.000		1 1.160		
Assertations before	0.0525 0	a stated at	100 1 1.4	10 1 1.1	108 5.1181	1 1.000 1.0		0.002 0.00	al. 6.1061		1 1 1 1 1 1	0.1.000		2100 C	0.0.004	0.00000.0007	44 1 1 1 7	001 K.102	1 1.003 1.003		1 1.003	1.164 0.1720 U	1072 8	1 1 10 1 1 1	6. 1.152	1 1.488 4.861	1 1.00	1.001 0.1	10.00	1.1.1.1.1			4 5.110 8	0.0000	0 K.000 S.MD				0 0.00	8 5.005 5.003			6.001 K.000 6.1	011 6.440 1	6 6.062 6.000		1 1.004 1.002	0.0003	1 1.051 1	0.0072 0.0000	1 1.00	4 9,0006 9
Reparation adjustments				100		61 1.007 1.2		16.006		a 6.00M	0.00			a a. ami.				0 K.0004		1.000 1.115				4 544	0 K. MM			4.354 4				10 K. 100 K	0 6.062 6.0088	0.0000			0.0012 K.0.001				0.000			8 6.667 6.886		and a set of		0 K.208 A.0		0.0016 0		A 9.000 0
Adjusticity and the loss	1 1.146		460 A.MEI 8.6	100 and 1	: :	6 1.169 1.1	4) <u>0 1.00</u>		1 1 1 4	8 5.1000	1.442 F	1.002 1		A 961 N. 108 N.	100 2.67		A 1998 1.1	off resp cu		1.001 1.000	8 0.083	: :	0 0.460 K	008 0 0.0			1 1.109	0.003 1.005	1 1.100			52 K-505	· · · · · · · · ·	1.008 1.0018	0 6.068	: : :	A.M.M. A. COW.	1 1.006 1	4.424 9	1 1 4 4 4		8 A.468	0 K.000 0.1	DES 5.553 5.163	1 1 1	1.168 K.1660	1.441 1	0 5.066 5.5	62 0 6.26%	0 0.1100	1 1 1	1.000 5.000
			AND A MARK			a						A 160 A 160									A 100 A 100							A 1944 A 1944									a mail a 1100		A 4 4 4 4 4 4 4 4		a fact a start						A 1 1 1 1 1 1 1 1 1 1				and a cost	a provide a particular
Anderselencer because \$ 1	100 A 100 A												A start of stille	A 4 444	A 10 March 10	A Adda A M							and a state						14.11	A				A 4 1444															a hard a			
Lobrarian barrier & c														A 1/22 A 1/			1. 1	and a settle					the state																								10 1 1 1 1 1 1 1 1			a seal of a		
Adaptantale principles			1 1 1.4	100.000			A 1.000 1.00		1 1 1 1	8 1.16	2 5,200			1.0.007	1 1 1 1			1 1 1 1			1.1014 0.000		1 1.001 1.	10. I	0.5.108			1.147 1						2 5.184	5.015 5.099		3.893 5.925				1.114					1 1 10 1 11	G 3.05 2	0.5.000		1.010		1 1.00
Khatajalita ya W. W. J.		8 15.192						1.001	0.0.2003																																											
Landar Haily Mills	4.000 0				0 0.68		0.1.0.88			0 1.040	0.1140 0				0.0.001	0 5.0001 0.00	44	0 1.008 1.0	at Lobe com	4.000 0	4.044		0.0000 0.	4343 4.3044 4.1											1.001 0		0 5.100	1 1.00 1					0.002 0	8 8.005 1	0 0 0.400					0 6.004		1
																																																				1.0.00 h.100h
	1.01 2.5	1.0041 1.005	2.0 2.004 2.0	eff sales as	12 5.000 5.00	11 1.124 1.1	al 9.047 9.0	9.521 5.95	NA 5,1205 5,000	6 5.112 3.64	sild shiel	1.104 1.100	1.001 1.002 7	A 1001 1.188 7	100 Last L7		da anto ar	ore note all	01 1.403 1.103	1.010 1.00	5.1081 2.104	Long builds o	200 0.000 K	SCA SHOLE ST	1 5,100 5.1	M 5.000 5.000	8 3.5 of 1.100	9.452 9.952	11.11 2 5.	NR 9,000 5/	the areast a top	10 1.00 1.00	4 5.000 5.0525	0.003 0.001	\$100 \$.00m \$.mm	8 6.001 0.104T	3,000 5,000 5,0	Do notes along	9.005 5.005 S.	04 1.008 1.112	3.510 5.070 S.	10 1.000 1.000	1.127 1.160 1.1	10 1.08 1.005	1.107 1.101	\$364 5.000 S.	31 1.100 1.100	3.007 5.020 5.0	A 1,508 5,100	3.014 5.110 S.	Loss p. old Loss	4 9.925 9.125
	s. many p. David.		0.05 0.000 0.0	int child ch		61 1.222 1.1	al close alle	0.0002 0.0		4 1.160	b K.0096. B	0.000 K.000	0 6.000 6	.0004 0.0008 K.	ADD 1.111 1.17	20 6315 L.W	26 A.M. A.Y	HE LOOD LI	N 1.052 1.885		6.001/ 0.001	1.004 1.004	0.0.000 1.	00% 6.00M 6.0	a	11 L.B.C.B.	0 1.120 0	0.004 K.000 I	101 L.CM L.	NO 1.161 L.	108 1.00	18 1.160	a 6.1865	0.008 0.1061	0 5.0000 5.00		6.011 K.0041	1 1.151 1	0.004 0.000	0.0.000	1 0.000 0 0.0	104 K.4244 K.422	0.000 0.000	8 A 662 A 164	0.000 LANG	and a bear as	14 0.14L 1.0U	1.007 1.000 1.0	23 0 6.1261	0 K.0544		
Borne, formir ignernes	0.000 0	Latit Luck L	110 6 Hol 6.	of a set a	OR ADRIDUCED	al a.ana a.a	44 0.000 0.12	8 6.68	N 1 1.11	a 1.186 1.04	8 K.2050 G.1285	1.102 1.100	A.081 A.000 A	. star 0. stars 1.	An and ar	20 6188 8.02	A 6360 6.0	bas alober all	04 0.040 0.000	1.1071 1.000	6.001 0.000		. NOR 1. MAR 1.		6 6.122 6.00	01 K.400 K.401	3 0.000 N.120	a stal a lata	8 0.000 E.	Gal 0.041 K.	ALC: 1, 1, 162 1, 198	NO 1.1006 1.000	d a class a selfe	0.08 0.1081 0	and a same a size	1.040 1	1.202 1.162 1.1	MJ 1.064 1.1008	0.000 t.120 t.	and a size a size	0.000 K.000 0.0	HE 1.822 1.108	a name a part a s	fall alles alash	4 1.808 1.60H	and a size as	in and and	0.004 0.100 0.1	AR 0.021 0.000	0.000 A.145 A.1	0.00 0.000 0.000	. s. a.m
And a state of the	a stand of											1 mil 1 mil			1 1.1451	1 1.000 1.00			1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														· · · · · · · · · · · · · · · ·										1.000 0.000 0.0	a start start		LARS LOOM				A 10/2 A 10/2 A 1		
And an and a second sec		They a state													A 4 1941 1 1		a a stat		fa is shown in 197	shall a seal	1.000	the state of	with a serie of				A 1073 A 1000	1 1000 1 1000	a state of			a salar		a line a start of	a start water of the			1	A MET A MARK A			the state a local		a shed lives		and a term	a a cost a star	A MARK A CAMPAN A P			THE A LOSS	4 9 7044
Commences on APRIL 1																		int of the																			a most a fact															
Residence in the local in	0.002 0.002 1	5.614 0.0070 5.1	147 1.004 1.0	the same as	10 L10 L0	01 1.507 A.S	ta Anto A.C.	1.000 1.00	1 1 1 1	1 4,000	5.870 5.100	1.00 1.000	1.011 1.010 1	A1102 L-100 F	100 110	1.10.10	ALC: 1 100	0 1.670 1.0			1.008 1.007	1.00 to 20 to	AND 1.005 A.	the same an	0.1002 11.0	62 A. O. M. A. A. M.	1 1.107 1.109	L 024 1.490	1 1.	26 F K	ad \$1000 \$.47	14 1		2 4.1011 1	3.005 5.000		and allow an	10 1.427	A.885 A.108 A.	NO 1.000 1.11	Long Lond L	10 1.000 A.000	3.000 A100 5.1	off states this	1.110.1.110	LAND LLC LT	10 1.161 1.0	A REAL PROPERTY AND	or a test a last	2 10.500 0.1	1012 1.002 1.000	4 15.000 5.000
	5.004 L100 5	LINES ALM R.	100 0.004 0.1	143 6.000 6.	123 8.4325 1.2	64 0.069 0.1	13 1.016 K.05	1.105 1.04	el Lada 2.00	2 5.1251 5.558	1.05.0	1.809 1.85	A.1081. A.M.S. 7	A 124 B. AND	1.42 1.843 1.17		A 1100 1.7	181 K.120 K.M	61 A.M. A.M.	1 1.001 1.188	5.005 1.009	LIGH K.HER H	L-66 23.826 L	boo Amili La	10 K. 262K G. 20	66 A.160 G.199	4 1.059 10.10	0.000 A.008 -	1026 L.500 K.	AR 3.805 L	NO 5.4534 5.472	22 L.M.G. L.M.	A LAND LINE !	along alari a	1.1080 1.1188 1.4	a aliana aliana	1.1.24 1.2800 0.7	ial name name	A CAR A PLAN A	204 6.182 6.124	1 1.474 1.474 4.1	188 K.9800 K.920	LAND LAND L	lis also also	6 16.468 3.400	1.021 K.000 L.1	104 0.4342 1.8000	LOSS LOOP LO	GE LEASE A LOSS	0.000 0.00gt 0.1		
1.01							8 181.58								* **** **				ar an ai ai i	10.11 80.00	W1.14 88.5	FR. P. 14, 18, 18		A. 10 (A. 11)	* 15.05 11.	1 0 181.0	a wa.ai A.a	* 6.00	0.14 0.18				1 10.00 2.00	A.11 6.1 1	101.10 0 0%.0	1 10.07 (0.15)		LAI					8.00 Halls		4 45.18 1.01.MJ			11.19 96.00 0.0	10 IL.10 I	m. a 46.40 11	an mail and	
100					1		1 1 11										-1 Mar 10		A DATE OF	The second se	and in the state	and and a		NAV PERSONAL AND	A 10.0 10 100			tion to the test of the					5 AL 8 AL 1	and an other states of	The set of the set of								a state state of		a state of the	and in the second		ALL IN THE R. P. LEWIS CO., NAME AND ADDRESS OF ADDRESS	is that that	1 10 10 10	a state and	100.1 000.0

Supplementary Figure S1. A longitudinal sampling strategy for the collection of blood and fecal samples from 30 healthy individuals at different points during the process of SARS-CoV-2 vaccination was used to explore the dynamic patterns of immune systems, the gut microbiota, and the production of antibodies and their interactions. a: Longitudinal strategy for collecting blood and fecal samples from 30 healthy individuals during the process of vaccination with the Sinovac vaccine. b: Responses of human immune systems during the process of vaccination with the Sinovac vaccine. c: Alterations in the gut microbiota of healthy individuals during the process of vaccination with the production with the Sinovac vaccine. d: Correlations and contributions of different features to the production of SARS-CoV-2 antibodies.

Supplementary Figure S2. Correlations between the concentrations of antibodies against SARS-CoV-2 and the features of cytokines, indicators obtained from routine blood tests, lymphocytes, and the gut microbiota. (a)A positive correlation was found between IFN-γ and IgG. (b) A positive correlation was found between IFN-γ and IgM. Positive correlations were detected between CD3CD4 and (c) IgG and between CD3CD4 and (d) IgM. Negative correlations were found (e) between RBCs and IgG and (f) between RBCs and IgM. The following correlations were also found between SARS-CoV-2 antibodies and gut microbes: (g) *Prevotella copri* and IgG, (h) *Eubacterium hallii* and IgG, (i) *Clostridium leptum* and IgG, (j) *Dorea formicigenerans* and IgG, (k) *Mgeasphaera elsdenii* and IgA, (l) *Parabacteroides goldsteinii* and IgA, (m) *Lactobacillus ruminis* and IgA, (n) *Ruminococcus torques* and IgM, (o) *Anaerostipe shadrus* and IgM, (p) *Lachnospiraceae bacterium* 2_1_58FAA and IgM.

Supplementary Figure S3. Correlations between metagenomic pathways and the features of cytokine and lymphocytes during the vaccination process of SARS-CoV-2 to highlight their relationship. Correlations between (a) 1CMET2-PWY: N10-formyl-tetrahydrofolate biosynthesis and Eos; (b) BRANCHED-CHAIN-AA-SYN-PWY: superpathway of branched amino acid biosynthesis and CD3; (c) PWY-7228: superpathway of guanosine nucleotides de novo biosynthesis I and IFN; (d) PWY0-1319: CDP-diacylglycerol biosynthesis II and CD3CD7; (e) PWY-7222: guanosine deoxyribonucleotides de novo biosynthesis II and CD3CD4CD8, and (f) PWY-3001: superpathway of L-isoleucine biosynthesis I and IL-2.

Supplementary Figure S4. Effects of gut microbiota, body features, and their interactions

on the production of SARS-CoV-2 antibodies.

1	Dynamic changes in host immune system and gut microbiota are
2	associated with the production of SARS-CoV-2 antibodies
3	Maozhen Han ^{1,†} , Yixuan Huang ^{3,†} , Hongya Gui ^{2,†} , Yixuan Xiao ^{2,†} , Maozhang He ² , Jiling Liu ² ,
4	Xiujing Cao ⁴ , Meijuan Zheng ⁵ , Min Lu ⁵ , Weihua Jia ¹ , Hui Li ⁶ , Xiaoyan Wang ⁷ , Na Zhang ¹ , Shu-an
5	Kong ³ , Xiaohui Liu ⁸ , Yonggui Wu ^{9,*} , Fengchang Wu ^{8,*} , Shenghai Huang ^{1,2*}
6	
7	¹ School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
8	² Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key
9	Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University,
10	Hefei, Anhui 230032, China
11	³ Department of Clinical Medicine, the First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui
12	230032, China
13	⁴ Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui
14	230032, China
15	⁵ Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032
16	China
17	⁶ Hefei City Maternal and Child Health & Family Planning Service Center, Hefei, Anhui 230001, China
18	⁷ Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
19	⁸ State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of
20	Environmental Sciences, Beijing 100012, China
21	⁹ Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
22	
23	
24	[†] These authors contributed equally to this work.
25	* Corresponding author:
26	Shenghai Huang, huangshh68@aliyun.com; Fengchang Wu, wufengchang@vip.skleg.cn; Yonggui Wu,
27	wuyonggui@medmail.com.cn
28	

29 Materials and methods

30 Study design and sample collection

31 In our present study, to highlight the dynamic changes in the gut microbiota, host response, and production of 32 SARS-CoV-2 antibodies and their interactions during the process of SARS-CoV-2 vaccination, which involves 33 various doses, a total of 30 healthy volunteers (undergraduates of School of Life Sciences, Anhui Medical University) 34 whose age ranged from 20 to 23 years were recruited from May to July 2021. Their height and weight were measured 35 to calculate the BMI. Blood samples were collected four times, and fecal samples were collected five times. The 36 procedure is detailed in Supplementary Figure S1. Specifically, blood and fecal samples were collected before 37 vaccination with the Sinovac vaccine, 2 weeks after vaccination with the first dose of the vaccine, and 1 and 2 weeks 38 after vaccination with the second dose of the vaccine, and fecal samples were also obtained on the day at which the 39 second dose was administered, which resulted in a total of four blood samples and five fecal samples (Figure 1A, 40 Supplementary Figure S1). Each blood sample was divided into three parts: one part was used for routine blood 41 test, a second part was utilized for flow cytometry, and the remaining serum was maintained at -80 °C for cytokine and antibody detection. The first blood sample was used as a control. Immediately after collection, the fecal samples 42 were stored at -80 °C for the extraction of DNA and sequencing. Subsequently, 30 blood samples and 31, 30, 22, 31, 43 44 and 29 fecal samples were collected at each of the four blood and five fecal sampling time points, respectively, to 45 explore the dynamic patterns of the host response, gut microbiota, production of SARS-CoV-2 antibodies, and the 46 interaction among the gut microbiota, host response, and production of SARS-CoV-2 antibodies and assess their 47 interactions during the SARS-CoV-2 vaccination process (Figure 1A, Supplementary Figure S1). The study 48 protocols were all approved by the Biomedical Ethics Committee of Anhui Medical University (No 2021H021).

mples E Blood sample Π. *30 : *30 *30 *30 *30 *30 *30 Before vaccina 05/09/2021 oks after first dose 4 weeks after first dose 06/07/2021-06/15/2021 2 weeks after second dose 06/21/2021-06/29/2021 15 female*15 2 we week after second dose 06/14/2021-06/22/2021 b. The responses of human immune systems during the alterations of gut microbiota for healthy individuals d. Correlations and contributions of different features to production of SARS-CoV-2 antibodies. process of vaccination of Sir c vaccine. during the process of vaccin on of Sinovac vaccine Routine blood t Dvr changes of gut m Correlation analysis WBC Lym RBC Blood samples П Blood samples body and RBC body and CD4+T cell I and bioch nd gut mic low Cytometry CD3+CD4+ CD3+CD8+ 30 after first dose 30 CD19+ CD16+CD56 cal sample Contributions determined by VPA econd do 30 22 ors of physiologic **1**w e 🔲 31 ELIS/ IL-2 IL-4 ks after second dose 29 N lgA lgG lgM

50

51 Supplementary Figure S1. A longitudinal sampling strategy for the collection of blood and fecal samples from

52 **30** healthy individuals at different points during the process of SARS-CoV-2 vaccination was used to explore 53 the dynamic patterns of immune systems, the gut microbiota, and the production of antibodies and their 54 interactions. a: Longitudinal strategy for collecting blood and fecal samples from 30 healthy individuals during the 55 process of vaccination with the Sinovac vaccine. b: Responses of human immune systems during the process of 56 vaccination with the Sinovac vaccine. c: Alterations in the gut microbiota of healthy individuals during the process 57 of vaccination with the Sinovac vaccine. d: Correlations and contributions of different features to the production of 58 SARS-CoV-2 antibodies.

59

60 Measurement of cytokines and SARS-CoV-2 antibodies in serum by ELISA

61 To monitor the response of the host's body based on cytokines and SARS-CoV-2 antibodies, the levels of 62 inflammatory factors, including IL-2, IL-4, IFN-7, and SARS-CoV-2 antibodies, including anti-(N+S) IgA, anti-(N+S) 63 IgG, and anti-(N+S) IgM, were measured by ELISA. Specifically, the levels of cytokines and antibodies in whole-64 blood serum obtained from all the blood samples (n = 30 at each sampling point) were measured. We selected IL-2 65 and IFN-y as representatives of Th1 cells and IL-4 as representative of Th2 cells. IL-2, IL-4, IFN-y, anti-(N+S) IgA, anti-(N+S) IgG and anti-(N+S) IgM were measured using a high-sensitivity enzyme linked assay quantitative kit (the 66 67 kits for cytokines were procured from Bio-Techne USA Co., Ltd., Minnesota, USA, and the kits for antibodies were obtained from Wuhan Fine Biotechnology Co., Ltd., Wuhan, China) in accordance with the manufacturer's 68 69 instructions. Specifically, taking the detection of SARS-CoV-2 antibodies as an example, the kit can detect the 70 concentration of SARS-CoV-2 antibodies based on indirect enzyme-linked immunosorbent assay technology. Ninety-71 six-well plates were percolated with recombinant 2019-nCoV nucleocapsid and spike protein (antigen), and HRP-72 conjugated antibody was used as the detection antibody. Subsequently, the standards, test samples and HRP-73 conjugated detection antibody were added to the wells, and the plates were washed with wash buffer. 3,3',5,5'-74 Tetramethylbenzidine (TMB) substrates were used to visualize the HRP enzymatic reaction, which is catalyzed by 75 HRP to produce a blue product that changes to a yellow color after addition of an acidic stop solution. The density of 76 the yellow color is proportional to the target amount of sample captured in the plate. The O.D. absorbance at 450 nm 77 is read using a microplate reader, and the concentration of the target was then calculated.

78

79 Characteristics of peripheral lymphocyte subset alterations measured by flow cytometry

80 To quantify the variation in lymphocytes during the process of SARA-CoV-2 vaccination, the levels of different

types of lymphocytes, including CD3+ T cells, CD3+CD4+ T cells, CD3+CD8+ T cells, CD3+CD4+CD8+ T cells, CD3+CD8+ T cells, CD3+ CD8+ T cells, CD3+ T cells, CD3+ CD8+ T cells, CD3+ T cells, CD3+

82 CD4+/CD8+ ratio, CD16+CD56+ cells, and CD19+ cells, were measured by flow cytometry. Specifically, a 50-µl 83 peripheral blood sample with EDTA-K2 anticoagulant was first added to a prepared pipe in a biological safety cabinet. 84 Second, the blood sample was incubated with 5 µl of antibodies (BD MultitestTM IMK kit (BD Biosciences, USA, 85 Catalog No.340503) and BD Multitest[™] 6-color TBNK reagent (BD Biosciences, USA, Catalog No.644611)) for 15 86 min in a dark room. Third, 450 µl of BD FACS lysing solution (10X) (BD Biosciences, USA, Catalog No.349202) 87 and sterile water were injected to lyse the erythrocytes for 10 min. The processed samples were then examined using 88 a flow cytometer (BD FACSCantoTM, BD Biosciences) and FACSDiva v. 6.1 software, and the results were analyzed 89 using FlowJo software (Version 7.6.1; Tree Star, Inc., Ashland, OR, USA) at the First Affiliated Hospital of Anhui 90 Medical University.

91

92 Measurement of indicators using routine blood tests

Various indicators obtained from routine blood tests, such as eosinophils, neutrophils and hemoglobin, were measured via routine blood tests conducted at Hefei City Maternal and Child Health & Family Planning Service Center (Anhui Province). Specifically, a 2-ml blood sample was collected in an EDTA-K2 anticoagulant tube. Immediately after collection, the tube was mixed by being gently reversed several times to ensure adequate anticoagulation of the blood specimen. The blood samples were then sent to Hefei City Maternal and Child Health & Family Planning Service Center, and the indicators obtained from routine blood tests were directly measured using a three-classification blood cell analyzer (BC-5390 CRP, Marry).

100

101 DNA extraction and metagenomic sequencing

102 In this study, we collected fecal samples from 30 volunteers at five time points during the SARS-CoV-2 103 vaccination process to explore the dynamic changes in the human gut microbiota. A total of 143 fecal samples were 104 collected, and metagenomic DNA was extracted using the Magen HiPure Stool DNA Kit (Magen, Guangzhou, China) 105 according to the manufacturer's instructions. All extracted DNA was dissolved in TE buffer and stored at -20 °C until 106 further use. The metagenomic DNA of the samples was then fragmented randomly to the desired size using a Covaris 107 S/E210 and electrophoresed to obtain DNA fragments of the required lengths. Subsequently, the DNA fragments 108 from each sample were ligated with adapters and evaluated for cluster preparation. All sequencing reactions of these 109 samples were performed using the Illumina X Ten platform with a paired-end sequencing strategy (GENEWIZ, Inc., 110 South Plainfield, NJ, USA). All sequencing data from the 143 fecal samples were deposited into NCBI's Sequence 111 Read Archive (SRA) database with the BioProject number PRJNA778267.

112

113 Processing of metagenome datasets

To profile the taxonomic composition of the gut microbial community, 143 fecal samples were collected for metagenome sequencing. The generated sequencing reads were first quality-filtered against the human genome (hg38) using bowtie2 to identify the reads belonging to humans and filter the contaminants. To further obtain the high-quality reads, the 143 metagenome datasets were subjected to quality control using Trimmomatic (v 0.32) with the following parameters: TruSeq3-PE.fa, 2:30:10; leading, 3; trailing, 3; sliding window, 5:20; and min length, 25. Subsequently, an average of 16.7 Gb of high-quality sequences were obtained from each sample (fastq document), which resulted in the generation of 2.4 TB of sequence data in total (fastq document).

121

122 Taxonomical and functional compositions based on shotgun metagenomic datasets

We selected two popular tools currently used in metagenome analysis, namely, MetaPhlan2 and HuMAnN2, to accurately identify the taxonomic and functional compositions of the gut microbial communities with the default settings. The taxonomic compositions of the gut microbial communities were identified, and the relative abundance of each taxon was summarized at the phylum, class, order, family, genus, and species levels. The enterotypes of all fecal samples were classified using the 'Biotype' package on the R platform. In addition, the dominant species were selected based on the average abundances (higher than 0.01%), and the interactions between individual species were calculated using the Kendall correlation coefficient with the 'cor' package on the R platform.

130

131 Analysis of public datasets related to patients with COVID-19

132 To track the dynamic changes and patterns of the gut microbial communities of our cohort and patients with 133 COVID-19, we downloaded the gut metagenome datasets of a cohort of COVID-19 patients from SRA databases 134 (BioProject number: PRJNA624223). This cohort consisted of 73 fecal samples, which were divided into healthy 135 Chinese individuals (15 samples), a critical group (8 samples), a mild group (5 samples), a moderate group (32 136 samples), a severe group (7 samples), and a pneumonia control group (6 samples), and provided evidence of the gut 137 microbial alterations in COVID-19 patients. These 73 gut microbiome datasets were analyzed using the same strategy 138 as that used for the datasets from our cohort, and the similarities among the microbial communities were estimated 139 through linear discriminate analysis (LDA).

141 Statistical analysis

142 In the present study, the alpha diversities of the gut microbial communities, including Shannon and Simpson 143 indices, were calculated with the 'vegan' package and compared among different time points during the SARS-CoV-144 2 vaccination process. ANOSIM and PERMANOVA were performed based on the Bray-Curtis distance matrix to 145 estimate whether the taxonomic compositions of the gut microbial communities differed among different time points 146 during the process of SARS-CoV-2 vaccination. In addition, LDA, which is a supervised learning approach, was 147 applied to distinguish the gut microbial communities based on the taxonomic compositions. To evaluate the effects 148 of body features and the gut microbiota and assess their contributions to the production of antibodies against SARS-149 CoV-2, a variation partitioning analysis (VPA) was performed using the R platform. Specifically, we utilized the 150 interactive forward selection function in Canoco software (version: 5.0) to eliminate the collinearity between factors 151 based on the contribution, p value and adjusted p value of each feature. Afterward, the features mean corpuscular 152 volume (MCV), CD3+CD8+ T cells, CD3+CD4+CD8+ T cells, CD16+CD56+ cells, lymphocyte (LYM), and red 153 blood cell volume distribution width-SD (RDW-SD) were selected and defined as body features, whereas a total of 154 25 taxa (Supplementary Table S5), including Veillonella dispar, Lachnospiraceae bacterium 3 1 46FAA, Lachnospiraceae bacterium 2 1 58FAA, Lachnospiraceae bacterium 8 1 57FAA, Akkermansia muciniphila, 155 156 Klebsiella sp MS 92 3, and Lactobacillus ruminis, were selected as representative species of the gut microbiota. 157 Moreover, the contributions of body features and the gut microbiota to the production of SARS-CoV-2 antibodies 158 were estimated using the 'varpart' function of the 'vegan' package on the R platform. The analyses were performed 159 using SPSS version 22.0. The differences between groups were assessed by two-way ANOVA, and two-sided exact 160 P-values are reported. A P-value < 0.05 was considered to indicate statistical significance. In the linear correlation 161 analysis, a P-value < 0.05 was considered to indicate statistical significance.