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Gut microbiota as non- invasive 
diagnostic and prognostic 
biomarkers for natural 
killer/T- cell lymphoma

We read with interest the study by 
Kartal et al1 showing that the gut- 
microbiota- derived biomarkers for 
disease stratification are often shared 
by subjects across disease cohorts. Here, 
we confirmed their observations with 
findings from a newly diagnosed natural 
killer/T- cell lymphoma (NKTCL) 
cohort, in which the gut biomarkers 
were significantly overlapped with those 
of multiple disease cohorts and consis-
tently enriched/depleted in subjects 
with those diseases. Importantly, many 
of the shared biomarkers were remark-
ably associated with patient outcomes 
in our cohort, implying that they may 
have broad prognostic values in multiple 
diseases.

‘Microbiota- gut- lymphoma axis’ 
represents a fascinating avenue of 
microbiota- mediated lymphomagen-
esis and intervention opportunity,2 but 
the implications of gut microbiota in 
NKTCL remain enigmatic. To iden-
tify gut microbiota- derived diagnostic 
biomarkers for NKTCL, we recruited 
a discovery cohort consisting of 30 
treatment- naïve patients and 20 healthy 
controls (HCs), and a validation cohort, 
including 12 patients and 13 HCs, 
respectively (online supplemental mate-
rials and methods). We applied shotgun 
metagenomic sequencing to their faecal 
samples, profiled their gut metagenomes 
using mOTUs2 V.2.5,3 and trained a 
patient- stratification classifier with all 
species- level taxonomic features using 
the LASSO algorithm implemented in 
SIAMCAT.4 Our classifier achieved 
an accuracy of 0.868 area under the 
receiver operating characteristic curve 
(AUROC) on the discovery cohort, and 
0.910 AUROC on the validation cohort 
(figure 1A). To increase the sample 
size for model training, we retrained a 
LASSO classifier for the NKTCL using 
all the samples from both cohorts, and 

achieved an accuracy of 0.813 AUROC 
in cross- validation, which strongly 
support the role of gut microbiota as 
diagnostic biomarkers for NKTCL.

To examine the specificity of the 
NKTCL gut- microbiota- derived signa-
ture, we applied the all- sample NKTCL 
classifier to 29 public gut microbiota 
cohorts (online supplemental table 
S1). We observed an overall false posi-
tive rate (FPR) of 3.1% in the HCs, 
but higher FPRs in patients of several 
cohorts (figure 1B), especially those 
of the pancreatic cancer (Kartal_
DE_2022_PC, Kartal_ES_2022_PC, 
Nagata_JP_2022_PC), Crohn’s Disease 
(He_2017_CD, Franzosa_2018_CD, 
Forslund_2015_CD) and liver disease 
(Qin_2014_LD). These results imply 
significant overlaps in the biomarkers 
between these diseases and NKTCL, 
which was confirmed using LEfSe anal-
ysis5 (figure 1C). Importantly, these 
biomarkers were consistently enriched/
depleted in most cohorts, including the 
enrichment of oral- derived taxa of Veil-
lonella and Streptococcus in the patients, 
and known beneficial species in HCs 
such as Faecalibacterium prausnitzii, 
Eubacterium rectale and Bifidobacte-
rium adolescentis1 6 7 (figure 1C). These 
findings indicate that our classifier can 
accurately distinguish NKTCL patients 
from HCs; nevertheless, due to the 
shared biomarkers with other diseases, 
combination of selected clinical indica-
tors with microbial biomarkers would 
be salutary for a distinctive diagnostic 
model.

Survival data were available for 
the NKTCL patients in the discovery 
cohort. Notably, many identified micro-
biome biomarkers, especially those 
shared by multiple diseases, could 
significantly predict the overall survival 
(OS) and progression- free survival 
(PFS) of the patients, including Strepto-
coccus parasanguinis, Romboutsia timo-
nensis and Veillonella atypica (online 
supplemental figure 1A–D). Finally, we 
created a Streptococcus parasanguinis–
Romboutsia timonensis index (SRI) as 
the relative abundance ratio of the two 
species, and obtained the best prog-
nostic prediction power than other 
individual species and combinations. 
Namely, NKTCL patients with higher 
SRI scores showed significantly worse 
OS and PFS than those with lower SRI 
scores (figure 1D–E). Furthermore, 
we observed remarkable correlations 
between high SRI score and multiple 
adverse prognostic factors of NKTCL, 
including PINK- E, stage, lymph node 
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Figure 1 (A) Performance of the area under the receiver operating characteristic curve (AUROC) values of the gut microbiota- based classifier of 
NKTCL on the discovery cohort (threefold three times repeated cross- validation; grey line, the training set), the validation cohort (yellow line, the 
testing set), and all samples combined (ten- fold ten times repeated cross- validation; the ‘all data model’, blue line). (B) External validations of the 
Figure 1 Continued
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disease specificity of the NKTCL faecal microbiota model (the ‘all data model’). False positive rates (FPRs) of the unconstrained model (without feature 
selection) in the 29 external test sets were shown as a bar plot. We defined the false- positive predictions as those wrongly classified as NKTCL by 
our model. Thus, two FPRs will be calculated for each cohort, one for the healthy controls (ie, the proportion of healthy controls that were wrongly 
classified as NKTCL), and another for the diseased individuals (ie, the proportion of diseased individuals that were wrongly classified as NKTCL). We 
then also calculated an overall FPRs for all the healthy controls and each of the diseases. Prediction results from the ‘enrichment- constrained’ model 
by selecting NKTCL- enriched biomarkers (enrichment- constrained model) as recommended by Kartal et al,1 were shown in online supplemental 
figure 1E. (C) Marker microbes shared by the NKTCL cohort and other seven cohorts that had ~20% and higher FPRs in their diseased subjects 
in (B); markers were identified using the LDA Effect Size (LEfSe) analysis. Red (blue) species name represents its enriched (depleted) in patients. 
Wilcoxon rank sum test was used to compare the differences in relative abundances between the patients and HCs of the respective cohorts. Inside 
the square brackets are the numbers of studies in which the species were also among the top features (robustness >50%) of the corresponding 
disease- stratification classifiers (online supplemental table S2). The ‘Star’ symbol in front of a species name indicates that the species are significantly 
associated with patients’ survival in our NKTCL cohort; the details can be found in online supplemental figure 1A–D. Inside the parentheses next 
to the species name is the number of studies in which the corresponding species were identified as a biomarker, that is, with |LDA| ≥ 2. Inside the
parentheses after a study name is the total number of species in this figure that were also biomarkers of the study. (D–E) the overall survival (OS) 
and progression- free survival (PFS) Kaplan- Meier survival curves for NKTCL patients (n=30). Patients were divided into the SRI- high group and SRI- 
low group according to scores of the Streptococcus parasanguinis–Romboutsia timonensis index (SRI), calculated using the quotient of the relative 
abundances of the two species; the cut- points of SRI 26386550 for OS and 10 776 890 for PFS, and were determined by the ‘survminer’ R package 
V.0.4.98 (https://github.com/kassambara/survminer). Log- rank test was used to calculate the p values. (F) Correlations between the SRI score and
multiple adverse prognostic factors of NKTCL, including prognostic index for natural killer lymphoma- Epstein- Barr virus (PINK- E; L: low risk, I: 
intermediate risk, H: high risk), disease stage, lymph node (LN) involvement, responses to first- line treatment (R: response, NR: non- response), B
symptoms, Eastern Cooperative Oncology Group (ECOG) Performance Status  ≥  2, an increase in plasm Epstein- Barr virus (EBV) DNA level, and Ki67
expression  ≥ 60%. Wilcoxon rank sum test was used to compare continuous variables between groups. (More specific descriptions on these results 
could be found in online supplemental results). ACD, atherosclerotic coronary disease; ADA, American diabetes; BRCA, breast cancer; CD, Crohn’s 
disease; CRC, colorectal cancer; CTR, controls; DE, German; ES, Spanish; JP, Japan; LD, liver disease; NAFLD, non- alcoholic fatty liver disease; PC, 
pancreatic cancer; T1D, type 1 diabetes; T2D, type 2 diabetes; UC, ulcerative colitis.

involvement and responses to first- line 
treatment (all p<0.05; figure 1F).

Overall, our results lend support for 
gut microbiota as a potent assistive 
diagnostic tool for NKTCL. Moreover, 
the SRI score, based on the shared 
biomarkers, may have extensive prog-
nostic utility in multiple diseases and 
deserves further scrutiny (online supple-
mental discussion).
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Supplementary material of “Gut microbiota as non-invasive diagnostic and1
prognostic biomarkers for natural killer/T-cell lymphoma”2

Supplementary Materials and Methods3

Data availability statement4

The metagenomic sequencing data reported in this study is available at the China National5
Center for Bioinformation (CNCB) - National Genomics Data Center (NGDC) under BioProject6
accession number PRJCA010329. All other data are available in the manuscript including its7
supplementary files, or from the corresponding authors upon request.8

Subjects recruitment9

During May 2019 to April 2021, a total of 50 subjects, including 30 treatment-naïve patients10
with natural killer/T-cell lymphoma (NKTCL) and 20 healthy controls (HCs) were recruited at the11
First Affiliated Hospital of Zhengzhou University; the patients and controls were matched for age,12
gender and body mass index (Supplementary table S3). They constituted the discovery cohort for13
this study. Based on the same criteria, additional 12 treatment-naïve patients with NKTCL and 1314
HCs were recruited during October 2021 to February 2022 in the same medical center; they15
constituted the validation cohort.16

All study participants were of Han nationality and lived in the central China, where the17
typical diet includes wheat flours, rice, vegetables, meat, and beans, etc. All the individuals18
involved in our study were omnivorous.19

Among the participants, NKTCL patients were identified by pathological diagnosis, and the20
HCs included healthy individuals who visited our hospital for their physical examination. All the21
enrolled individuals had to meet the following criteria: (1) age 18 years or older; (2) no antibiotics22
use within two weeks; (3) without any anti-tumor treatments, including chemotherapy,23
radiotherapy, or immunotherapy; (4) no severe gastrointestinal disorders, including ulcerative24
colitis, Crohn’s disease, or acute diarrhea; (5) no history of severe, progressive or uncontrolled25
cardiac, hepatic, renal, or mental diseases; (6) no history of drug abuse. Furthermore, all the HCs26
should meet the following additional criteria, including having the following routine examinations27
results within the range of healthy individuals, including the physiological and clinical parameters28
of the blood, urine and stools, liver and kidney function, blood sugar, blood lipid, electrolyte,29
electrocardiogram and chest X-ray or computed tomography, negative for hepatitis B surface30
antigen, hepatitis C virus antibody, treponema pallidum antibody and human immunodeficiency31
virus antibody; in addition, they should have no history of malignant tumor and acute or chronic32
diseases, including hypertension, diabetes, obesity (BMI ≥30), metabolic syndrome and infectious33
diseases.34

Clinical assessment35

Relevant clinical data were captured from consulting physicians, electronic medical records36
and follow-up systems (Supplementary table S4-5). Survival data for this research was evaluated37
by overall survival (OS) and progression-free survival (PFS). Here the OS was defined from the38
date of diagnosis until death from any reason. In addition, PFS was defined as the time of39
diagnosis until objective disease progression or death from any reason. The stage and risk40
stratification of patients with NKTCL were based on the Chinese Southwest Oncology Group and41
Asia Lymphoma Study Group ENKTL (CA) system [1] and the prognostic index for natural killer42
lymphoma-Epstein-Barr virus (PINK-E) [2], respectively. The 2014 Lugano criteria [3] was used43
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to assess the responses to first-line treatment, and patients were classified as response (R) if they1
achieved an objective response (complete or partial response), versus non-response (NR) if they2
had stable disease or progressed on therapy.3

Sample collection4

Fresh faeces of each study subject were collected in the morning (6:00-9:00 a.m.) using a5
fecal collection container (Sarstedt, 80.734.311, Germany) and stored without any additives. All6
collected samples were transferred on ice to a -80°C refrigerator (Haier, DW-86L626, China)7
within two hours and stored there until the time of DNA extraction.8

DNA extraction9

Total faecal DNA was extracted using a MagPure Stool DNA KF kit B (Magen, China)10
according to the manufacturer’s instructions. The concentration of genomic DNA in each sample11
was quantified with a Qubit Fluorometer by using Qubit dsDNA BR Assay kit (Invitrogen, USA)12
and the quality was checked by running aliquot on 1% agarose gel.13

Library construction14

1μg DNAwas randomly fragmented by Covaris E210, and the fragmented DNAwas selected15
by Magnetic beads (Agencourt, Cat. No. A63882) to an average size of 200-400bp. The selected16
fragments were through end-repair, 3’ adenylated, adapters-ligation, PCR amplifying and the17
products were purified by the Magnetic beads. The double stranded PCR products were heat18
denatured and circularized by the splint oligo sequence. The single strand circle DNA were19
formatted as the final library and qualified by QC. The qualified libraries were sequenced on20
MGISEQ-2000 platform (BGI-Shenzhen, China) for paired-end sequencing in both directions21
with a read length of 150 bp (PE-150).22

Metagenome data processing23

All the raw metagenomic data were trimmed by SOAPnuke v.1.5.2 [4] to remove adapter24
contamination, low-quality bases, N’ base, and duplication. Then the trimmed reads were mapped25
to the human genome reference sequence (hg19) using Bowtie2 (version 2.3.5.1) [5] with default26
parameters, and filtered to get clean data.27

Taxonomic profiles were obtained using the mOTU profiler v2.5 [6] and filtered to retain28
species with a relative abundance of ≥10e-5 in ≥2% of the samples.29

Modelling and evaluation of a patient stratification classifier to distinguish NKTCL30
patients from healthy controls31

The modeling and evaluation was performed using the SIAMCAT R package v.1.14.0 [7]; R32
version 4.0 was used throughout the study.33

In order to explore the effect of intestinal microbes on the identification of NKTCL patients,34
we first eliminated taxa from the discovery cohort that had low overall abundance and prevalence35
(abundance cut-off point: 0.001). Then, features were standardized as centered log-ratio after36
being normalized by log10 transformation (to prevent endless numbers from the logarithm, a37
pseudo-count of 1e-05 was applied to all values). Data were randomly split into test and training38
sets in three times repeated 3-fold cross-validation. The remaining folds were utilized as training39
data to develop an L1-regularized (LASSO) logistic regression [8] model for each test fold.40

The trained metagenomic classifiers for NKTCL were then applied to the validation cohort41
after applying a data normalization routine, which selected the same set of features and used the42
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same normalization parameters as in the normalization procedure for the discovery cohort.1

External validation of NKTCL classifier on 29 public cohorts2

To test the specificity of the NKTCL classifier against other disease cohorts, we first3
combined the samples from both the discovery and validation cohort in order to increase the4
sample size for model training. We then trained two LASSO classifiers for the NKTCL using all5
the samples by using the SIAMCAT R package by two methods. The first method is the same as6
the above, except that data were randomly split into test and training sets in ten times repeated7
10-fold cross-validation. In a second approach as Kartal et al [9] putting forward, features were8
filtered by first calculating the single-feature AUROC and then removing features with an9
AUROC <0.5, thereby selecting features enriched in NKTCL (‘enrichment-constrained’model).10

To assess the disease specificity of the trained models, we applied the above two models to11
the 29 gut microbiota studies covering 6,641 samples across twelve diseases used by Kartal et al12
[9] and Nagata et al [10] (Supplementary table S1). Within-cohort data normalization was13
performed according to the instructions by SIAMCAT (the same normalization procedure used for14
the NKTCL dataset). Then the NKTCL classifiers were applied to these cohorts, which classified15
the samples as either “healthy” or “NKTCL”. The cut-off threshold for the predictions was set to a16
false-positive rate of 10% among controls in the initial NKTCL study population. Subjects were17
considered as “false-positives” if they were classified as “NKTCL”. Thus, a false-positive rate18
could be calculated separately for the control and disease groups for each cohort.19

Modelling and evaluation of seven public cohorts20

To identify the top features whose relative abundances could be used to distinguish the21
diseased subjects from the controls in seven selected public cohorts including pancreatic cancer22
(Kartal_DE_2022_PC, Kartal_ES_2022_PC, Nagata_JP_2022_PC), Crohn’s Disease23
(He_2017_CD, Franzosa_2018_CD, Forslund_2015_CD), and liver disease (Qin_2014_LD), we24
first built a patient-stratification classifier for each of the cohort, by using the same procedures25
mentioned above, except a 10-fold ten times repeated cross-validation method was used. The top26
features were defined as those having more than 50% robustness as calculated by the SIAMCAT27
tool, i.e., the features that were used by ≥50% of the 100 cross-validation models.28

Marker identification29

We used the linear discriminant analysis effect size (LEfSe) [11] method to identify the30
marker microbes for each cohort between the control and disease groups. The markers in selected31
diseases were then compared with those of our NKTCL cohort. The Wilcoxon rank sum test was32
used to examine whether the relative abundances of the markers were significantly different33
between the diseased and HC groups within each cohort.34

Survival analysis35

The survival analysis was performed using the “survminer” R package v.0.4.9 [12], which36
determined the optimal cut-points to divide the patients into two groups, and evaluated the37
associations between the marker abundances and patients’ survival outcomes. The Kaplan-Meier38
plot, statistical results and “number at risk” table were also visualized using the “survminer” R39
package.40

Statistical analysis41

All statistical analyses, and the analyses involving R packages, were performed in the version42
4 of R.43
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Supplementary Results1

Metagenome-based classifiers distinguished NKTCL patients from controls with high2
accuracy3

We constructed three times repeated 3-fold cross-validation LASSO logistic regression4
models on the discovery cohort, achieving an AUROC of 0.868 (95% CI: 0.773-0.964; figure 1A).5
The models validated very well on the validation cohort, achieving an AUROC of 0.910 (95% CI:6
0.791-1; figure 1A). To increase the sample size for model training, we combined the samples7
from both the discovery and validation cohorts, built a LASSO logistic regression model, and8
validated it using ten times repeated 10-fold cross-validation. We achieved an accuracy of 0.8139
(95% CI: 0.715-0.911; figure 1A) AUROC for the “all-samples” model, which strongly support10
the role of gut microbiota as diagnostic biomarkers for NKTCL. The top contributing species to11
the model are shown in Supplementary figure 1F.12

Performance of NKTCL classifier on external cohorts of other diseases13

We next tested the specific of our NKTCL classifier on 29 metagenomic datasets (cohorts) of14
other diseases, including pancreatic cancer, type 1 and type 2 diabetes, colorectal cancer, breast15
cancer, liver diseases, non-alcoholic fatty liver disease, Crohn’s disease and ulcerative colitis16
(Supplemental table S1). All the datasets contained also healthy controls. In total, these cohorts17
contained a total of 6,641 samples. Among the cohorts, 28 were used by Kartal et al [9]. We added18
an additional cohort Nagata et al [10], which also focused on the pancreatic cancer, similar to the19
study by Kartal et al [9].20

By setting a 90% specificity (allowing for 10% false positive predictions) cut-off to our21
model, we applied it to the samples of the 29 datasets. We defined the false-positive predictions as22
those wrongly classified as NKTCL by our model. Thus, two false-positive rates (FPRs) will be23
calculated for each cohort, one for the healthy controls (i.e., the proportion of healthy controls that24
were wrongly classified as NKTCL), and another for the diseased individuals (i.e., the proportion25
of diseased individuals that were wrongly classified as NKTCL); please consult the26
Supplementary table S6 in which we used the CD as an example to demonstrate how the FPRs27
were calculated. We then also calculated an overall FPRs for all the healthy controls and each of28
the diseases. As shown in figure 1B, we observed an overall FPR of 3.1% in the healthy controls,29
suggesting the high specificity of our model against the HCs. However, we observed higher FPRs30
in patients of several cohorts, especially those of the pancreatic cancer (Kartal_DE_2022_PC,31
Kartal_ES_2022_PC, Nagata_JP_2022_PC), Crohn’s Disease (He_2017_CD, Franzosa_2018_CD,32
Forslund_2015_CD), and liver disease (Qin_2014_LD).33

Performance of “enrichment-constraint” NKTCL classifier on external cohorts34

Kartal et al also observed high FPRs of their pancreatic cancer (PDAC) classifier on the35
external cohorts. They resolved this issue by developing a “enrichment-constraint” model, i.e., by36
selecting features that are significantly enriched in the PDAC patients. Their resulting37
“enrichment-constraint” model had low FPRs in both the healthy controls and diseases in the 2538
external cohorts (see Figure 3 in ref.[9]). To test if their strategy could also work on our dataset,39
we retrained a classifier using the discovery cohort and the NKTCL-enriched species as the40
features. We did intra-cohort validation it using three times repeated 3-fold cross-validation and41
obtained an accuracy 0.812 AUROC (95% CI: 0.689-0.935; Supplementary figure 1G); this model42
achieved similarly on the validation cohort with a 0.769 AUROC (95% CI: 0.580-0.958;43
Supplementary figure 1G). We thus also trained a “all sample” model on combined samples of44
both cohorts using NKTCL-enriched features. This final “enrichment-constrained” model45
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performed quite well in ten times repeated 10-fold cross-validation with an accuracy of 0.8641
AUROC (95% CI: 0.776-0.951; Supplementary figure 1G).2

We then applied this model to the 29 external cohorts. We observed significantly increased3
FPRs in both the healthy controls and diseased individuals, suggesting that the4
“enrichment-constraint” method did not work on our dataset. Our results implied that the NKTCL5
might be better characterized by both the loss of healthy bacteria and the enrichment of pathogenic6
bacteria, and both types of bacteria are required to build disease-specific machine learning7
classifiers.8

Marker microbes shared by NKTCL and other diseases9

We noticed significant overlap of the microbial biomarkers between the NKTCL cohort and10
the other disease cohorts, especially those having high FPRs with our classifier (figure 1C). We11
thus systematically investigated the overlapping of the marker microbes among these cohorts. We12
observed significant overlap of the markers among these cohorts. Most importantly, these shared13
biomarkers were consistently enriched/depleted in most cohorts, including the enrichment of14
oral-derived taxa of Veillonella and Streptococcus in the patients, and known beneficial species in15
HCs such as Faecalibacterium prausnitzii, Eubacterium rectale and Bifidobacterium adolescentis16
(figure 1C). Also, a few biomarkers were also among the top features of the machine-learning17
classifiers of their respective cohorts, i.e., they were used by ≥50% of the 100 cross-validation18
models during intra-cohort validation; for example, Veillonella parvula is the top feature of19
multiple models on various cohorts (NKTCL, Kartal_DE 2022_PC, Qin 2014_LD, Franzosa20
2018_CD; Supplementary table S2). These findings indicate that due to the shared biomarkers21
with other diseases, combination of selected clinical indicators with microbial biomarkers would22
be salutary for a distinctive diagnostic model.23

A S. parasanguinis/R. timonensis abundance ratio (SRI score) is of predictive value to24
NKTCL patient survival, and is based on shared biomarkers25

With the availability of the survival data of 30 NKTCL patients in the discovery cohort, we26
evaluated the prognostic value of the species to patient survival. We identified a total of four27
species that could significantly predict the overall survival (OS) and/or progression free survival28
(PFS) of the NKTCL patients, including Streptococcus parasanguinis, Romboutsia timonensis,29
Veillonella atypica, and Faecalibacterium prausnitzii (Supplementary figure 1A-D). We also30
evaluated the combinations of the four species and created an S parasanguinis-R.timonensis index31
(SRI) as the relative abundance ratios of the two species that had the best performance (figure32
1D-E and Supplementary table S7). According to the SRI score, patients were divided into two33
groups, namely SRI-high and SRI-low at the SRI cut-points of 26,386,550 and 10,776,890 for the34
OS and PFS, respectively. We observed that the NKTCL patients with higher SRI scores had35
significantly inferior OS and PFS (p < 0.001 for both the OS and PFS; figure 1D-E). In addition,36
we observed a significant correlation between high SRI score and multiple adverse prognostic37
factors of NKTCL, including PINK-E, stage, lymph node involvement, and responses to first-line38
treatment (all p < 0.05; figure 1F). Since all the four species are also biomarkers of many diseases39
(figure 1C), and the SRI index is based on them, we speculate that they can have broad prognostic40
values in other diseases. In fact, F. prausnitzii has been shown to be significantly associated with41
the patient survival in the PDAC Japan cohort (see Figure 5 in ref.[10]), further supporting our42
speculation.43

44

45
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Supplementary Discussion1

Overall, our results suggest that the gut microbiota could be both of diagnostic and2
prognostic values for the natural killer/T-cell lymphoma (NKTCL).3

Strikingly, there were significant overlaps in the disease biomarkers (i.e., microbial species4
that show significant differential abundances between the diseased individuals and the5
non-diseased controls) among the NKTCL and several diseases, including pancreatic cancer6
(PDAC or PC), liver disease (LD) and Crohn’s disease (CD). Although it is not clear for the exact7
mechanism underlying the cross-disease overlaps, we speculate that the “shared” biomarkers are8
likely associated with common pathogenic changes of the local gut environments, including9
inflammation and/or gut epithelial barrier dysfunction, which render the intestinal mucosa more10
conducive to the same microbial taxa and further account for some overlapped alterations of gut11
microbiota in different diseases. Furthermore, the NKTCL might be better characterized by both12
the loss of healthy bacteria and the enrichment of pathogenic bacteria, suggesting both types of13
bacteria are required to build disease-specific machine learning classifiers, which might be the14
reason for a higher FPRs in the “enrichment-constrained” diagnostic model than the all-feature15
model.16

In fact, some of the microbial biomarkers also show consistent depletion/enrichment17
behaviors in multiple other diseases, as shown in our GMrepo v2 database [13] (data repository18
for human gut microbiota); see the list below for details. Thus, they are less likely caused by diet,19
life style and living environment, which are often cohort-specific.20

 Veillonella parvula: https://gmrepo.humangut.info/taxon/2946621

 Veillonella atypica: https://gmrepo.humangut.info/taxon/3977722

 Streptococcus parasanguinis: https://gmrepo.humangut.info/taxon/131823

 Megasphaera micronuciformis: https://gmrepo.humangut.info/taxon/18732624

 Faecalibacterium prausnitzii: https://gmrepo.humangut.info/taxon/85325
 Bifidobacterium adolescentis: https://gmrepo.humangut.info/taxon/168026
 Coprococcus comes: https://gmrepo.humangut.info/taxon/41007227

Most recently, Priya et al. [14] identified a similar set of gut microbes that were shared in28
patients with colorectal cancer, inflammatory bowel disease and irritable bowel syndrome,29
including Peptostreptococcaceae, Streptococcus and Staphylococcus. They showed that these30
biomarkers could impact disease-specific pathophysiological processes through regulation of31
different host genes. Therefore, studies integrating gut microbiome and host genomics data are32
urgently needed to unravel the relationships between the “shared” microbial perturbations and the33
pathogenesis of diverse diseases.34

Despite the above results, we feel that our study had several limitations, such as the limited35
sample sizes, the single-center recruitment strategy, and relatively short observational time for36
patient survival status. These may affect the generalization ability of our results. Thus,37
multi-center studies with longitudinal repeated sampling are needed to further validate our38
findings. In addition, multi-omics survey of the patient samples and mechanism researches with39
the help of model animals are also needed to provide mechanistical insights underlying the gut40
microbiome-disease associations.41

42
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Supplementary Figure Legends1

Supplementary figure 1 (A-D) Associations between selected biomarker species and patient2

survival outcomes in terms of the overall survival (OS) and progression-free survival (PFS) for3

NKTCL patients (n = 30). In each analysis, patients were divided into two groups according to the4

relative abundances; the cut-points were determined automatically by the “survminer” R package5

v.0.4.9 [12] (https://github.com/kassambara/survminer). The cut-points are: Streptococcus6

parasanguinis [r_00312], 0.001437739 for OS and 0.001077689 for PFS; Romboutsia timonensis7

[r_09389], 7.91e-05 for OS and 1e-10 for PFS; Veillonella atypica [r_01941] 0.007384512 for8

both OS and PFS; and Faecalibacterium prausnitzii [r_06108], 0.003101582 both for OS and PFS.9

(E) External validation results of the disease specificity of the NKTCL “all data” model. False10

positive rates (FPRs) of the “enrichment-constrained” model by selecting NKTCL-enriched11

biomarkers (enrichment-constrained model) using methods recommended by Kartal et al [9]. ACD,12

atherosclerotic coronary disease; ADA, American diabetes; BRCA, breast cancer; CD, Crohn’s13

disease; CRC, colorectal cancer; CTR, controls; LD, liver disease; NAFLD, non-alcoholic fatty14

liver disease; PC, pancreatic cancer; T1D, type 1 diabetes; T2D, type 2 diabetes; UC, ulcerative15

colitis; JP, Japan; ES, Spanish; DE, German. (F) The heatmap shows the normalized abundance of16

11 selected species in the faecal microbiome of the samples. The left panel represents the17

contribution of each selected feature to the unconstrained model (without feature selection) using18

all data, and the robustness (the percentage of models in which the feature is included as predictor)19

of each feature is expressed as a percentage. (G) Performance as the area under the receiver20

operating characteristic curve (AUROC) values of “enrichment-constrained” diagnostic model on21

the discovery cohort (three-fold three times repeated cross-validation; grey line, the training set),22

the validation cohort (yellow line, the testing set), and all samples combined (ten-fold ten times23

repeated cross-validation; blue line, all data).24
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Supplementary Tables1

Supplementary table S1. External validation cohorts used in this study. The cohort lists,2
corresponding meta-data, and processed microbial profile data were all obtained from the study by3
Kartal et al [9] and Nagata et al [10].4

Supplementary table S2. Overlaps between the biomarker species shown in Figure 1C and the5
top features of the disease-stratification classifiers for selected cohorts. Here the top features of6
each cohort are those having more than 50% robustness in the corresponding disease-stratification7
classifier, determined by the SIAMCAT tool (see Materials and Methods for more details).8

Supplementary table S3. Participant characteristics at the time of faeces sampling.9

Supplementary table S4. Summarized clinical features of patients with natural killer/T-cell10
lymphoma.11

Supplementary table S5. The sequencing depth and meta-information of the samples we12
collected, including basic information such as age, gender and some clinical features of patients13
with natural killer/T-cell lymphoma.14

Supplementary table S6. CD as an example to demonstrate how the FPRs were calculated. FPR15
is the number of wrongly classified patients/healthy controls divided by the number of16
patients/healthy controls.17

Supplementary table S7. Evaluations of the prognostic value of the shared species to the survival18
of NKTCL patients.19
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